Le groupe de travail est ouvert à tous ceux qui ont un intérêt de près ou de loin pour le transport optimal et ses applications. Les séances sont en général composées d’un exposé court (le premier) et d’un exposé long (le second).
séance 7:
Lundi 3 avril - 14h00
Salle de séminaire du LIGM: 4ème étage du bâtiment Copernic.
Orateur: Gabriele Todeschi (LIGM)
(Cliquer pour le résumé)A relaxed Beckmann’s problem for SPD valued measures and application to Full Waveform Inversion.
Full Waveform Inversion (FWI) is a seismic imaging technique that aims at reconstructing subsurface parameters. It can be formulated as a highly non-convex variational problem, where the main difficulty comes from discerning temporal shifts in the data. For this reason, optimal transport has recently started to be considered as a misfit function between observed and generated data. However, these are made of signed oscillating signals, whence the need to handle them prior to its application. To bypass this issue, we take advantage of multi-component seismograms, lift them into positive semi-definite (SPD) matrices and design an optimal transport problem between SPD valued measures. To this end, we extend in a natural way to this setting the Beckmann’s formulation of the L1 transport. I will present and analyze the model, in particular its calibration for the FWI problem. Importantly, the model admits a primal Kantorovich form, which I will discuss. I will finally provide some good preliminary results of the application of this misfit function, showing the effectiveness of the approach. This is a joint work with Jean-Marie Mirebeau and Ludovic Métivier.
séance 6:
Lundi 13 février - 14h00
Salle de séminaire du LIGM: 4ème étage du bâtiment Copernic.
Orateur: Vincent Divol (Paris-Dauphine)
(Cliquer pour le résumé)Estimation d’applications de transport optimal dans des espaces fonctionnels généraux.
Nous considérons le problème de l’estimation d’une application de transport optimal entre une loi source P (fixée) et une loi cible inconnue Q, sur la base d’un échantillon de loi Q. Un tel problème a récemment gagné en popularité avec de nouvelles applications en apprentissage automatique, comme les modèles génératifs. Jusqu’à maintenant, des vitesses d’estimations sont connues seulement dans un petit nombre de cas (par exemple, quand P et Q ont des densités majorées et minorées et que l’application de transport appartient à un espace de Hölder), qui sont rarement réalisés en pratique. Nous présentons une méthodologie permettant d’obtenir des vitesses d’estimation de l’application de transport optimal dans des espaces généraux, qui se base sur l’optimisation de la formulation duale du problème de transport empirique. À titre d’exemple, nous pouvons donner des vitesses de convergence dans le cas où P est gaussien et l’application de transport est donnée par un réseau de neurones à deux couches avec un nombre arbitrairement grands de neurones.
Collaboration avec Aram-Alexandre Pooladian et Jonathan Niles-Weed
Séance 5:
Lundi 6 février - 14h00
Salle de séminaire du LIGM: 4ème étage du bâtiment Copernic.
Orateur: Luca Nenna (LMO)
(Cliquer pour le résumé)Grand Canonical Optimal Transport.
In this talk I will briefly review standard Multi-Marginal Optimal Transport (a number N of marginals is fixed) focusing, in particular, on the applications in Quantum Mechanics (in this case the marginals are all the same and represent the electron density). I will then extend the Optimal Transportation problem to the grand canonical setting: only the expected number of marginals/electrons is now given (i.e. we can now define an OT problem with a fractional number of marginals). I will compare these two problems and show how they behave differently despite considering the same cost functions. Existence of minimisers, Monge solution, duality, entropic formulation and numerics will be discussed.
Séance 4:
vendredi 16 décembre - 16h15
Salle de séminaire du LIGM: 4ème étage du bâtiment Copernic.
Orateur: Christophe Denis (LAMA)
(Cliquer pour le résumé)
Dans un premier temps, nous exposerons des résultats récents obtenus en équité algorithmique dans le cadre de la classification multi-classes. Dans un deuxième, nous expliciterons le lien entre la théorie du transport optimal et la problématique d’équité algorithmique et les questions qui en découlent en apprentissage multi-classes.Équité algorithmique et lien avec le transport optimal.
- Je ferai aussi un exposé court sur un travail récent (en commun avec Théo Dumont et Théo Lacombe (LIGM)):
(Cliquer pour le résumé)
For the L2-Gromov-Wasserstein distance, we study the structure of minimizers in Euclidean spaces for two different costs. The first cost is the scalar product for which we prove that it is always possible to find optimizers as Monge maps and we detail the structure of such optimal maps. The second cost is the squared Euclidean distance for which we show that the worst case scenario is the existence of a map-anti-map structure. Both results are direct and indirect consequences of an existence result on costs that are defined by submersions. In dimension one for the squared distance, we show that a monotone map is optimal in some non-symmetric situations, thereby giving insight on why such a map is often found optimal in numerical experiments. In addition, we show numerical evidence for a negative answer to the existence of a Monge map under the conditions of Breniers theorem, suggesting that our result cannot be improved in general. arXiv: 2210.11945.On the existence of Monge maps for the Gromov-Wasserstein distance.
Troisième séance:
lundi 27 juin 2022. UPEM, LAMA, 4B107 (quatrième étage du bâtiment Copernic), 13h - 15h.- Exposé de François-Pierre Paty :
(Cliquer pour le résumé)
Abstract: The theory of weak optimal transport (WOT), introduced by [Gozlan et al., 2017], generalizes the classic Monge-Kantorovich framework by allowing the transport cost between one point and the points it is matched with to be nonlinear. In the so-called barycentric version of WOT, the cost for transporting a point x only depends on x and on the barycenter of the points it is matched with. This aggregation property of WOT is appealing in machine learning, economics and finance. Yet algorithms to compute WOT have only been developed for the special case of quadratic barycentric WOT, or depend on neural networks with no guarantee on the computed value and matching. The main difficulty lies in the transportation constraints which are costly to project onto. In this paper, we propose to use mirror descent algorithms to solve the primal and dual versions of the WOT problem. We also apply our algorithms to the variant of WOT introduced by [Choné et al., 2022] where mass is distributed from one space to another through unnormalized kernels (WOTUK). We empirically compare the solutions of WOT and WOTUK with classical OT. We illustrate our numerical methods to the economic framework of [Choné and Kramarz, 2021], namely the matching between workers and firms on labor markets.Sur des approches numériques pour le transport optimal faible et ses applications.
- Exposé d’Adrien Vacher :
(Cliquer pour le résumé)
Abstract: It was recently shown that under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds. However, rather than the distance itself, the object of interest for applications such as generative modeling is the underlying optimal transport map. Hence, computational and statistical guarantees need to be obtained for the estimated maps themselves. In this paper, we propose the first tractable algorithm for which the statistical L2 error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation. Our method is based on solving the semi-dual formulation of optimal transport with an infinite-dimensional sum-of-squares reformulation, and leads to an algorithm which has dimension-free polynomial rates in the number of samples, with potentially exponentially dimension-dependent constants.Estimation statistique et computationnelle des potentiels de transport en grande dimension à partir d’échantillons.
Deuxième séance: lundi 23 mai 2022.
ENPC, salle de séminaire du CERMICS, 13h - 15h.
Exposé (seconde partie) de Paul-Marie Samson sur le problème de transport optimal faible (slides: Coûts de transport optimal faibles et dualité de Kantorovich).
Exposé de Benjamin Jourdain sur le transport optimal martingale et sa stabilité.
1ère séance: mardi 19 avril 2022.
Univ. Gustave Eiffel, Bâtiment Copernic, salle 2B140, 13h - 15h.
Exposé de Thomas Bonis sur la méthode de Stein Variational Gradient Descent (slides: Echantillonnage par descente variationnelle de Stein).
Exposé (première partie) de Paul-Marie Samson sur le problème de transport optimal faible (slides: Coûts de transport optimal faibles et dualité de Kantorovich).