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® H(v|m) : the relative entropy of v € P(X) with respect to a measure m,

H(v|m) := ng <%) dv,

and H(v|m) := +oo otherwise.

if v << m,
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Introduction : Marton’s transport inequality PoM. Samson

- introduction
In the 1990s, K. Marton introduced a weak transport cost To(v|u).
She proved a variant of the Csizar-Kullback-Pinsker inequality to recover a R
Talagrand's concentration inequality on product spaces, related to the so-called ~ famerovien cually
convex-hull method. for weak costs
Examples of weak cost
The Csizar-Kullback-Pinsker inequality : for any p, v € P(X) Marton's type of cost
Barycentric cost

I —vliTv? < 2H(v|w), ———
Further results.
Martingale costs

Talagrand's concentration

Weak transport
inequalities
Dual characterization

where I = vliy = 2sup () ~ v(A)
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Second method, duality arguments : based on a generalized Kantorovich
duality theorem for weak transport costs. We will see further...
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Example 2 : Let 1o denotes a reference probability measure on X.

otx.p) = [ 6 (wd(x

and c¢(x, p) = +oo otherwise, with 3 : RT —
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Particular case : a Talagrand’s cost for vo(u) = 1.0,
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Example 2 : Let 1o denotes a reference probability measure on X.

otx.p) = [ 6 (wd(x

>>j—l’fo<y>) duoly), itp << po,

and c(x, p) = +oo otherwise, with 8 : RT™ — [0, +00], convex and 3(0) = 0.
Towin =t [ 5 (v@0e) P2 0)) duaty)dut
wel(p,v) /1,0
= Ts(vIn)

Towhn) = sup { [ Qoo duto) - [ v |

in (X){fw<y)dp(y>+fﬁ(

Particular case : a Talagrand’s cost for vo(u) = 1.0,

Qpo(x) = y>>—<y>) duoly )}

) = [ 8 (h#y%(ﬁ) duo(y),

used by Talagrand (1996) as a main ingredient to reach deviation inequalities
for supremum of empirical processes with Bernstein’s bounds, see also S.
(2007).
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.

o(x,p) = 0 (x - jydp(y)), pePi(x),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.

o(x,p) = 6 (x - jydp(y)), pePi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.
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Remark : This cost has strong connections with convex functions. Observe that
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

— it Jo([x= [yaea) duco
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PEP1(
Remark : This cost has strong connections with convex functions. Observe that
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.
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= sup {f@s@du— Jsodu}

with Qg (x) = ian) {f@dp +6 <x - jydp(y)) } .
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Remark : This cost has strong connections with convex functions. Observe that
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=
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

— it Jo([x= [yaea) duco
= sup Uf?esodu— Ju;du}

with Qg (x) = ian) {f@dp +6 <x - jydp(y)) } .

PEP1(
Remark : This cost has strong connections with convex functions. Observe that

To(wlp

=

zeRM ( \ p,{ydp(y)=2

Qpo(x) = inf { ( inf fcpdp) +6 (x fz)} = Qyp(x).

=5(2)

The function @ is convex. From this observation we get

Tolvlu) = sup {joeadu - jadu} ,

P convex
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Example 3 : Barycentric variant of Marton’s cost function when X < R™.
c(x,p) =10 (x - Jydp(y)>, pe Pi(X),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

— it Jo([x= [yaea) duco
= sup U@s@du - Jsodu}

with Qg (x) = ian) {f@dp +6 <x - jydp(y)) } .

PEP1(
Remark : This cost has strong connections with convex functions. Observe that
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=
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Qpo(x) = inf { ( inf fcpdp) +6 (x fz)} = Qyp(x).

=5(2)

The function @ is convex. From this observation we get
To(v|p) = sup U Qypdy — J&du} ;
P convex

where the supremum runs over all convex Lipschitz functions @ : R — R
bounded from below,
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Theorem [GRST ’15] : Examples of weak costs for which duality holds
Example 3 : Barycentric variant of Marton’s cost function when X < R™.
ex.p) =0 (x= [yao).  pePia),

with 6 : R™ — [0, +00] (lower semi-)continuous convex and 6(0) = 0.

— it Jo([x= [yaea) duco
= sup {f@s@du - Jsodu}

with Qg (x) = ian) {fcpdp +6 <x - fydp(y)) } .

PEP1(
Remark : This cost has strong connections with convex functions. Observe that

To(wlp

=

zeRM ( \ p,{ydp(y)=2

Qpo(x) = inf { ( inf fcpdp) +6 (x fz)} = Qyp(x).

=5(2)

The function @ is convex. From this observation we get
To(v|p) = sup U Qypdy — J@du} ;
P convex

where the supremum runs over all convex Lipschitz functions @ : R — R
bounded from below, and Q¢ is the usual infimum-convolution operator.
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A first use of barycentric cost for a Strassen result

Tolu) = sup foewdu—fwdu,

W convex

with
Qui(x) = inf {(2) +6(x —2)}, xeR"
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Let p,v € P(R™).Then p <¢ v if and only if there exists a martingale (X, Y)
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Further results for barycentric costs
For0(x — 2) = |x — z|?,

To(w) = To(vlw) = inf B [IX —E[YIXIE].

2 o _ypR
Wz(V,u)—()'(r?g)IE[IX YI]-

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result

Martingale costs

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities
examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 13



Further results for barycentric costs
For0(x — 2) = |x — z|?,

To(w) = To(vlw) = inf B [IX —E[YIXIE].

2 . _ 2
WZ(V7M)—()I(I?$)E|:|X Y|].
For fixed v € Po(R™) let

By={n€731(]Rm)|77§c 1/}.

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result

Martingale costs

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities
examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 13
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Proposition : Gozlan-Juillet 2018, Alfonsi-Corbetta-Jourdain 2018

Given p, v € Po(R™), there exists a unique probability measure iz € 13, such
that
Ta(vln) = W2(z,v) = inf WE(n,v).
neBy
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Further results for barycentric costs
For0(x — 2) = |x — z|?,
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2 . _ 2
Wz(y,u)_().(r’\%EDX Y|].
For fixed v € Po(R™) let

By={n€P1(Rm)\n§c l/}.

Proposition : Gozlan-Juillet 2018, Alfonsi-Corbetta-Jourdain 2018
Given p, v € Po(R™), there exists a unique probability measure iz € 13, such

that .
To(vlp) = Wa(z,v) = inf WE(n,v).
neBy
1 is called projection of . on B,.
Theorem : (equality case) Gozlan-Juillet 2018
u, v € Po(R™). With the above definitions,
To(vlp) = Wi(nv) © B=p < v=Vr#u,

where 7 : R™ — R is a convex function of class Cy such that V7 is 1-Lipschitz.
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A complete statement for T,

Theorem : Gozlan-Juillet 2018, Backhoff-Veraguas-Beiglbock-Pammer 2018

® There exists )9 : R™ — R convex bounded from below such that

Ta(vln) = [ Qav” du— j w0 du.
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® There exists )9 : R™ — R convex bounded from below such that

Ta(vln) = [ Qav” du— j w0 du.

® 1 = V79 u where

o) + [P

, xeR™
2

0= B with h(x) =

(recall that h*(y) = supyerm{x.y — h(y)}.)
V70 is 1-Lipschitz.
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® 1 = V79 u where
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, XxeR™
2

7% =h* with h(x):=
(recall that h*(y) = supyerm{x.y — h(y)}.)
V70 is 1-Lipschitz.
e If (X, Y) is a coupling of 1 and v such that
To(vlw) = E[IX ~E[YIX]?],

then E[Y|X] has law iz and E[ Y| X] = V7°(X) almost surely.
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Example 4 :

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result
Further results

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities

examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition

curvature in discrete spaces

Weak transport costs. 15



Examples of weak optimal transport costs for which duality holds
Example 4 : The martingale transport problem on the line.

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result
Further results

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities

examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 15



Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .
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By definition, the martingale optimal cost associatedto w : R x R — R is
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menmart (; v)

[[wtxp) dney.

How to express this martingale cost as a weak cost ?

0, if fy dp(y) = x,
+o0, otherwise.
Observe that the function i is convex in p, and one has
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Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {TI' e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

T (v|w) = inf

wenmart (v

)jf w(X,y) dr(x,).

How to express this martingale cost as a weak cost ?

0, if fy dp(y) = x,
+o0, otherwise.
Observe that the function i is convex in p, and one has

Forx e R, pe Pi(R), let i(x,p) =

T (vlp)
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with c(x, p) := fw(x,y)dp(y) +i(x,p).
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Example 4 : The martingale transport problem on the line.
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T (v|w) = inf

wenmart (v

)jf w(X,y) dr(x,).

How to express this martingale cost as a weak cost ?

0, if fy dp(y) = x,
+o0, otherwise.
Observe that the function i is convex in p, and one has

Forx e R, pe Pi(R), let i(x,p) =

T (vlp)

{ﬂw(x’y) dr(x,y) + J/(X,px)du(x)}

inf
weN(p,v)

_inf [ etepduo),

with c(x, p) := jw(x,y)dp(y) + i(x, p). The cost c is convex in p.

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result
Further results

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities
examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition

curvature in discrete spaces

Weak transport costs. 15



Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {Tr e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

T (v|w) = inf

wenmart (v

)jf w(X,y) dr(x,).

How to express this martingale cost as a weak cost ?

0, if fy dp(y) = x,
+o0, otherwise.
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{ﬂw(x’y) dr(x,y) + J/(X,px)du(x)}
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_inf [ etepduo),

with c(x, p) := jw(x,y)dp(y) + i(x, p). The cost cis convex in p.

The dual Kantorovich Theorem for weak cost applies
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Examples of weak optimal transport costs for which duality holds

Example 4 : The martingale transport problem on the line.
Let u, v € P(R) such that . < v. According to Strassen Theorem,

nmat(, vy .= {Tr e N(p,v),m=pQp, Jydpx(y) = x p-almost surely} # .

By definition, the martingale optimal cost associatedto w : R x R — R is

T (v|w) = inf

wenmart (v

)jf w(X,y) dr(x,).

How to express this martingale cost as a weak cost ?

0, if fy dp(y) = x,
+o0, otherwise.
Observe that the function i is convex in p, and one has

Forx e R, pe Pi(R), let i(x,p) =

T ) = {[[ ey dnter + [ itx poduca

inf
weN(p,v)

inf [ ot pdu(o),

meN(p,v)

with c(x, p) := jw(x,y)dp(y) + i(x, p). The cost cis convex in p.

The dual Kantorovich Theorem for weak cost applies and we recover the
duality result by Beighbdck-Henry-Labordére-Penker (2013).

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen'’s result
Further results

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities
examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 15



Duality for martingale costs
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Duality for martingale costs
Theorem : [B and al.,2013]

Let w: R x R — R be a upper semi-continuous function, bounded from above.
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup ffwdﬂ: inf {de,quJng},
menmart (;, 1) f,.9,v
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Duality for martingale costs
Theorem : [B and al.,2013]

Let w : R x R — R be a upper semi-continuous function, bounded from above.

where the infimum runs over all measurable bounded functions f, g, v such that

forall x,y € R,

sup ffwdﬂ': inf {de,quJng},
wenmart (1) .9,y

w(x,y) < f(x) +9(¥) + 1)y — %)
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Duality for martingale costs
Theorem : [B and al.,2013]

Let w : R x R — R be a upper semi-continuous function, bounded from above.

where the infimum runs over all measurable bounded functions f, g, v such that

forall x,y € R, +9(y) + () — x).

sup fJWdﬂ— inf {de,quJgdu}
f,9,v

wenmart (1)

w(x,y) < f(x)

idea of the proof :
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup J‘J‘Wdﬂ'f inf {de,quJgdu}
menmart(p,v) .97

where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).
idea of the proof : The inequality <

is obvious since for all = € M™% (1, v),
| ety = 2 dmtxy) =0
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where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).
idea of the proof : The inequality < is obvious since for all = € MMy, v),

Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.
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where the infimum runs over all measurable bounded functions f, g, v such that
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idea of the proof : The inequality < is obvious since for all = € MMy, v),
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sup wdr = T (| u)

menmart (1 )

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen’s result
Further results

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities
examples
characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition

curvature in discrete spaces

Weak transport costs. 16



Duality for martingale costs
Theorem : [B and al.,2013]

Let w : R x R — R be a upper semi-continuous function, bounded from above.

where the infimum runs over all measurable bounded functions f, g, v such that
+9(y) + (X)) = X).

idea of the proof : The inequality <

[ 0w =) am(

forall x,y € R,

sup

menmart (1 )

sup fJWdﬂ— inf {de,quJgdu}
f,9,v

wenmart (1)

w(x,y) < f(x)

is obvious since for all = € MM (4, v),

X, y) = 0. For the reverse inequality > :lete > 0, w = —w.

wdr = T’”a”(y\“)—mf{j( R,,.g)du+fgdy}
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup ffwdﬂ': inf {de,quJng},
wenmart (1, v) lic (259

where the infimum runs over all measurable bounded functions f, g, v such that

forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).

idea of the proof : The inequality < is obvious since for all = € MMy, v),

Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.
sup JJ. wdn = =T (y|p) = igf {f(*:ch) du + jgdu}

menmart (1 )

= | (=Rego) du + fgo dv —e.
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup fJWdﬂ— inf {de,quJgdu}
menmart(p,v) .97

where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).

idea of the proof : The inequality < is obvious since for all = € MMy, v),

Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.

sup wadw > J(—cho)du+fgo dv —e.
menmart (u,v)

itx.p) = sup- ([ y oty - x),

~veR

Observe that
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup fdeﬂ— inf {de,quJgdu}
menmart (,, v) f,9,v

where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).

idea of the proof : The inequality < is obvious since for all = € MMy, v),

Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.

sup Jdeﬂ'ZJ.(*cho)dM'f‘fgo dv —e.
menmart (u,v)

Observe that  i(x,p) = sup~y - (Jydp(y) — x), it follows that
~eER
fo(x) := —Rcgo(x)
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Let w : R x R — R be a upper semi-continuous function, bounded from above.
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where the infimum runs over all measurable bounded functions f, g, v such that
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p VER
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w: R x R — R be a upper semi-continuous function, bounded from above.

sup ffwdﬂ': inf {de,quJng},
menmart (;, 1) f.9,v

where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).

idea of the proof : The inequality < is obvious since for all = € MMy, v),
Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.

sup wadw > J.(—cho)du-i-fgo dv —e.

menmart (.,)

Observe that  i(x,p) = sup~y -

yap(y) — x), it follows that
~eER

600 1= ~Aean() = sup inf { = [ aodp + [ wix yopy) = [+ (v = 10biy) |

= inf sup {~Go(y) + W(X,y) =7~ (¥ = x)}
YER y
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Duality for martingale costs
Theorem : [B and al.,2013]
Let w : R x R — R be a upper semi-continuous function, bounded from above.

sup fJWdﬂ— inf {de,quJgdu}
menmart(p,v) .97

where the infimum runs over all measurable bounded functions f, g, v such that
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Duality for martingale costs
Theorem : [B and al.,2013]

Let w: R x R — R be a upper semi-continuous function, bounded from above.

sup

fdeﬂ' = inf {de,quJng},
menmart (;, 1) f.9,v

where the infimum runs over all measurable bounded functions f, g, v such that
forallx,y e R, w(x,y) < f(x)+gy)+~vx)(y — x).

idea of the proof : The inequality < is obvious since for all = € MMy, v),

Jh(x)(y — Xx) dm(x,y) = 0. For the reverse inequality > :lete > 0, w = —w.
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p 7ER
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YER y

yap(y) — x), it follows that

-y (y—=x)}
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overall fo, go, v,  fo(X) + go(y) + X)+e=

inf
f0.90,

y(x) - (y — w(x,y).
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Applications of duality to transport-entropy inequalities and concentration
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Applications of duality to transport-entropy inequalities and concentration

A well known example :

Pinsker

54

Inégalité exponentielle (Hoeffding).
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Applications of duality to transport-entropy inequalities and concentration
A well known example : Pinsker < Inégalité exponentielle (Hoeffding).
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ii) is a generalisation of the so-called (convex) r-property introduced by Maurey

(1990) to recover Talagrand’s concentration results.
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Idea of the proof (Bobkov-Gotze 1999)
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From dual characterization of transport-entropy inequality to concentration
We assume that for all measurable functions ¢ : X — R u {+00} bounded

from below
Rey a _® a
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Rep(x) = pE;:fm U«pdp + C(x,p)}, XeX.
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As a consequence, the product measure yg on {0, 1}" satisfies
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Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure
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Proposition [GRST 2015] : Weak transport inequalities for the binomial law
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Proposition [GRST 2015] : Weak transport inequalities for the binomial law
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0s is the same cost function as for the Bernoulli measure.
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Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
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As a consequence, the product measure yg on {0, 1}" satisfies

Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law

The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with

Cs,n(X,p) = N0Os (1 (X—Jydp(y))), xe{0,1,...,n}.

n

0s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen'’s result
Further results
Martingale costs

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities

characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 20



Examples of weak transport-entropy inequalities in discrete spaces
Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure pq on X = {0, 1} with parameter g = pq(1) satisfies
Te.(1/(1 — s),1/s), s€ (0,1) where

6s(x%,p) = Os (x -[ ydp(y)) . xe{01},peP({0.1))

with 0s(h) ~g+ 2(1’77;) and 0s(h) ~g- g
As a consequence, the product measure yg on {0, 1}" satisfies

Tcg(1/(1 —s),1/s), and by projection arguments ((x1,...,Xn) — >i_1 Xi),
Proposition [GRST 2015] : Weak transport inequalities for the binomial law

The Binomial law pq,, on {0, 1, ..., n} satisfies Tc, ,(1/(1 — s), 1/s) with

Cs,n(X,p) = N0Os (1 (X—Jydp(y))), xe{0,1,...,n}.

n
0s is the same cost function as for the Bernoulli measure.
Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

Choose g = \/n, A > 0, and use the weak convergence as n — +co of the
binomial law 1, /5 , to the Poisson measure p, (k) = %e”, ke N.

P-M. Samson

introduction
Marton's inequality
Talagrand's concentration

Kantorovich duality
for classical costs
for weak costs

Examples of weak cost
Marton's type of cost
Barycentric cost

Strassen'’s result
Further results
Martingale costs

Weak transport
inequalities
Dual characterization
to concentration

Barycentric transport
inequalities

characterisation on R

Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities

The Schrodinger
minimization problem
definition
curvature in discrete spaces

Weak transport costs. 20



Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
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Characterization of probability measures on R satisfying a barycentric

transport-entropy inequality

Let 6 : R — RT be a symmetric convex cost function satisfying

o(t) = 2,

vt < o,

for some t, > 0.
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 6 : R — RT be a symmetric convex cost function satisfying

0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

Tolw = _int [0 ( [x=[» dpx(y))du(X)~

meN(p,v)
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 6 : R — RT be a symmetric convex cost function satisfying
0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

Tovl) = _int [0 ( [x- fydpxm)du(x).

mel(p,v)
Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
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Characterization of probability measures on R satisfying a barycentric
transport-entropy inequality
Let 6 : R — RT be a symmetric convex cost function satisfying

0(t) =2, Vt<t,, forsomet,> 0.

Fora> 0,let 604(t) =06(at) ,teR.
For any u, v € P(R), we consider the barycentric transport cost

To,lu) = inf f@a Ux - J-y dpx(y)>du(x).
mel(p,v)

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]
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Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric
probability measure with log-concave tails satisfies a barycentric transport
inequality with optimal cost, up to a universal constant.
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— comparison results for weak and strong moments for random vectors of
independent coordinates with log-concave tails.
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Theorem : [Maurey 1979]
For any subset A c Sj such that uo(A) > 1/2,
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Proof based on Hoeffding’s inequality - martingale method.
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Specific example : the Ewens distribution on the symmetric group
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Weak transport inequality for the Ewens distribution
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Let us define the weak-transport cost :
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where W is the Wasserstein distance on P(S,) associated to dy.
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Let us define the weak-transport cost :

n 2
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me Ny, ve) Ji5
T=11Qp

By Cauchy-Schwarz inequality - Wi2(v1,v0) < Ta(valvy) < Wy (vy, ),
where W; is the Wasserstein distance on P(S;) associated to dy.

Theorem : [S. 2017]
Forall se (0,1),
1
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m(x)L(x,y) = m(y)L(y, x).

Py = ef- : the Markov semi-group, P} = !t = P,
Q < X001 : the set of left-limited , right-continuous, piecewise constant paths

w = (W)ep) € XN
X; : the projection map,

For any Q e M(Q),

Xt w— wy
Q= Xi#Q

R” : As reference measure on 2, let R” be the Markov path measure
with initial measure Rj = m  and generator L7.
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to minimize H(x|Ry ;) over all € M(pg, 11).
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® Prékopa-Leindler types of inequalities,
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Curvature in discrete setting
Question : Is there a “good” notion of curvature in discrete setting from which
we can recover
® transport-entropy inequalities,
® Poincaré inequalities ,
* modified log-Sobolev inequalities, hypercontractivity,
® Prékopa-Leindler types of inequalities,
® concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend
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® The Bakry-Emery curvature condition (1985) - I',-calculus,
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® The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).

® | ott-Sturm-Villani definition of curvature.
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- Geodesic convexity property of entropy along interpolation paths :
Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...
We will focus on the approach by C. Leonard in discrete, following the recent

approach by G. Conforti (2018) in continuous spaces when L is a diffusion
generator Lf = J(Af — VU - V).
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