P-M. Samson

About the use of weak transport costs for concentration and functionals inequalities.

Based on :

- Kantorovich duality for general transport costs and applications. J. Funct. Anal. 273 (2017), no. 11, 3327-3405. Joint work with N. Gozlan, C. Roberto et P. Tetali.

Projet Bézout : New challenging Monge problems and their applications

Avril 2022

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

P-M. Samson Université Gustave Eiffel

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

• (X, d) : a metric space (complete separable)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

• (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport

inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- $\mathcal{P}(A)$: the set of all probability measures on $A \subset \mathcal{X}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given γ : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+.$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

-
$$\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

- $\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}).$ - $\gamma_0(u) = \mathbb{1}_{u \neq 0},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*.
 More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \text{ and } \gamma(\mathbf{u} + \mathbf{v}) \leqslant C(\gamma(\mathbf{u}) + \gamma(\mathbf{v})), \quad \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

- $\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}).$ - $\gamma_0(u) = \mathbb{1}_{u \neq 0}, \quad \gamma_0(d(x, y)) = \mathbb{1}_{x \neq y},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x, y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu,\nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} -\gamma_q(u)=u^q,q>0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X})=\mathcal{P}_q(\mathcal{X}).\\ -\gamma_0(u)=\mathbbm{1}_{u\neq 0}, \quad \gamma_0(d(x,y))=\mathbbm{1}_{x\neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X})=\mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu,\nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

Any measure $\pi \in \Pi(\mu, \nu)$ admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- $\mathcal{P}(A)$: the set of all probability measures on $A \subset \mathcal{X}$. More generally, given $\gamma : \mathbb{R}^+ \to \mathbb{R}^+$, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} -\gamma_q(u)=u^q,q>0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X})=\mathcal{P}_q(\mathcal{X}).\\ -\gamma_0(u)=\mathbbm{1}_{u\neq 0}, \quad \gamma_0(d(x,y))=\mathbbm{1}_{x\neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X})=\mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu, \nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

Any measure $\pi \in \Pi(\mu, \nu)$ admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

 $\pi(A \times B) = \int_A p_x(B)d\mu(x), \qquad \text{for all Borel set } A, B \text{ of}$

P-M Samson

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

X

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} -\gamma_q(u)=u^q,q>0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X})=\mathcal{P}_q(\mathcal{X}).\\ -\gamma_0(u)=\mathbbm{1}_{u\neq 0}, \quad \gamma_0(d(x,y))=\mathbbm{1}_{x\neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X})=\mathcal{P}(\mathcal{X}). \end{array}$$

Π(μ, ν) : the set of probability measures in P_γ(X × X) with marginals μ and ν.
 Any measure π ∈ Π(μ, ν) admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$
$$\pi(A \times B) = \int_A p_x(B)d\mu(x), \qquad \text{for all Borel set } A, B \text{ of } \mathcal{X}.$$

• $H(\nu|m)$: the relative entropy of $\nu \in \mathcal{P}(\mathcal{X})$ with respect to a measure *m*,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

Π(μ, ν) : the set of probability measures in P_γ(X × X) with marginals μ and ν.
 Any measure π ∈ Π(μ, ν) admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

 $\pi(A \times B) = \int_A p_x(B)d\mu(x), \qquad \text{for all Borel set } A, B ext{ of }$

• $H(\nu|m)$: the relative entropy of $\nu \in \mathcal{P}(\mathcal{X})$ with respect to a measure m,

$$H(
u|m) := \int \log\left(rac{d
u}{dm}
ight) d
u, \qquad ext{if }
u << m,$$

and $H(\nu|m) := +\infty$ otherwise.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

X

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\begin{aligned} -\nu \|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu,\nu)} \iint \mathbb{1}_{x \neq y} d\pi(x,y). \end{aligned}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \iota\|$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\begin{aligned} & \mathcal{L}_{\mathcal{T}\mathcal{V}} := 2 \sup_{A} |\mu(A) - \nu(A)| \\ & = 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y). \end{aligned}$$

The Marton's transport inequalities :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

$$\begin{aligned} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y). \end{aligned}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_{2}(\nu|\mu) \leqslant 2 H(\nu|\mu), \qquad \widetilde{T}_{2}(\mu|\nu) \leqslant 2 H(\nu|\mu),$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where
$$\begin{split} \|\mu - \nu\|_{TV} &:= 2\sup_{A} |\mu(A) - \nu(A)| \\ &= 2\inf_{\pi \in \Pi(\mu,\nu)} \iint \mathbbm{1}_{x \neq y} d\pi(x,y). \end{split}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_{2}(\nu|\mu) \leqslant 2 H(\nu|\mu), \qquad \widetilde{T}_{2}(\mu|\nu) \leqslant 2 H(\nu|\mu),$

with
$$\widetilde{T}_2(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int C(x, p_x) d\mu(x),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where
$$\begin{aligned} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbbm{1}_{x \neq y} d\pi(x, y). \end{aligned}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leq 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leq 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad c(x, p_{x}) = \left(\int \mathbb{1}_{x \neq y} dp_{x}(y)\right)^{2}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where
$$\begin{split} \|\mu-\nu\|_{TV} &:= 2\sup_A |\mu(A)-\nu(A)| \\ &= 2\inf_{\pi\in\Pi(\mu,\nu)} \iint \mathbbm{1}_{x\neq y} d\pi(x,y). \end{split}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leq 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leq 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad c(x, p_{x}) = \left(\int \mathbb{1}_{x \neq y} dp_{x}(y)\right)^{2}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where
$$\begin{aligned} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y). \end{aligned}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leqslant 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leqslant 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad c(x, p_{x}) = \left(\int \mathbb{1}_{x \neq y} dp_{x}(y)\right)^{2}$$

By Jensen's inequality,

$$\frac{1}{4} \|\mu - \nu\|_{TV}^2 \leqslant \widetilde{T}_2(\nu|\mu) \leqslant \frac{1}{2} \|\mu - \nu\|_{TV}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \quad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \{H_1/s + H_2/(1-s)\},$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport

inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X})$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in (0,1)} \{H_1/s + H_2/(1-s)\},$

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu) + \frac{1}{1-s}H(\nu_{2}|\mu), \qquad \forall s \in (0,1).$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \quad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \{H_1/s + H_2/(1-s)\},$ $\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \quad \forall s \in \{0,1\}.$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Evens distribution

deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since
$$\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \{H_1/s + H_2/(1-s)\},$$

 $\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \quad \forall s \in \{0,1\}.$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since
$$\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in (0,1)} \{H_1/s + H_2/(1-s)\},$$

 $\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \quad \forall s \in (0,1).$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\,\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1), \quad \forall \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}^{n}).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int c^{n}(x, p_{x}) d\nu_{1}(x),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int C^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\boldsymbol{c}^{\boldsymbol{n}}(\boldsymbol{x},\boldsymbol{p}) := \sum_{i=1}^{n} \boldsymbol{c}(\boldsymbol{x}_i,\boldsymbol{p}_i),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in \{0,1\}. \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int C^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\boldsymbol{c}^{\boldsymbol{n}}(\boldsymbol{x},\boldsymbol{p}) := \sum_{i=1}^{n} \boldsymbol{c}(\boldsymbol{x}_{i},\boldsymbol{p}_{i}), \qquad \boldsymbol{c}(\boldsymbol{x}_{i},\boldsymbol{p}_{i}) = \left(\int \mathbb{1}_{\boldsymbol{x}_{i}\neq\boldsymbol{y}_{i}} d\boldsymbol{p}_{i}(\boldsymbol{y}_{i})\right)^{2}.$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in \{0,1\}. \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash \rho}} \int c^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$c^n(x,p) := \sum_{i=1}^n c(x_i,p_i), \qquad c(x_i,p_i) = \left(\int \mathbbm{1}_{x_i \neq y_i} dp_i(y_i)\right)^2.$$

 p_i denotes the *i*-th marginal of p.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in \{0,1\}. \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash \rho}} \int c^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$c^n(x,p) := \sum_{i=1}^n c(x_i,p_i), \qquad c(x_i,p_i) = \left(\int \mathbb{1}_{x_i \neq y_i} dp_i(y_i)\right)^2.$$

 p_i denotes the *i*-th marginal of *p*.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2} \widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s} H(\nu_{1}|\mu^{n}) + \frac{1}{1-s} H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \quad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$\boldsymbol{c}^{\boldsymbol{n}}(\boldsymbol{x},\boldsymbol{A}) := \inf_{\boldsymbol{p},\boldsymbol{p}(\boldsymbol{A})=1} \boldsymbol{c}^{\boldsymbol{n}}(\boldsymbol{x},\boldsymbol{p}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \quad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

 $\text{Choose} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbbm{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbbm{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose $\frac{d\nu_1}{d\mu} = \frac{\mathbbm{1}_A}{\mu(A)}$ and $\frac{d\nu_2}{d\mu} = \frac{\mathbbm{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$C^n(x,A) := \inf_{p,p(A)=1} C^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, C^n(x,A) \leq t\}.$$

Choose We get

1

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

$$\frac{t}{2} \leq \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choo

Choose
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.
We get

 $\frac{t}{2} \leq \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X}\setminus A_t}}{\mu(\mathcal{X}\setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

~

 $D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choo

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

 $D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{''} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p,p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{I}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{I}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-10

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \backslash \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} =$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

 $c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{I}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{I}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \backslash \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$\stackrel{\text{de}}{=} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$\begin{split} D_{Tal}(x,A) &= \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 \text{ : the Euclidean ball in } \mathbb{R}^n.\\ \sqrt{c^n(x,A)} &= \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha,p). \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X}\setminus A_t}}{\mu(\mathcal{X}\setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$\begin{split} D_{Tal}(x,A) &= \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n. \\ \sqrt{c^n(x,A)} &= \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha,p). \end{split}$$

The function F is convex in p

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e_{\mathbf{A}} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_{A}}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function F is convex in p and concave in α ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X}\setminus A_t}}{\mu(\mathcal{X}\setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$\begin{split} D_{Tal}(x,A) &= \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n. \\ \sqrt{c^n(x,A)} &= \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha,p). \end{split}$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X}\setminus A_t}}{\mu(\mathcal{X}\setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \quad \text{so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \quad \text{so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X}\setminus A_t}}{\mu(\mathcal{X}\setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{C^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p)$$

(*F* is linear in *p*, the infimum is reached at the extremal points of $\mathcal{P}(A)$.)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^{n}(x,A)} = \sup_{\alpha \in B_{1}} \inf_{p \in \mathcal{P}(A)} F(\alpha,p) = \sup_{\alpha \in B_{1}} \inf_{\delta_{y}, y \in A} F(\alpha,\delta_{y})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^{n}(x,A)} = \sup_{\alpha \in B_{1}} \inf_{p \in \mathcal{P}(A)} F(\alpha,p) = \sup_{\alpha \in B_{1}} \inf_{\delta_{y}, y \in A} F(\alpha,\delta_{y})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \quad \text{so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{C^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p) = D_{Tal}(x, A),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$\begin{split} D_{Tal}(x,A) &= \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n. \\ \sqrt{c^n(x,A)} &= \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha,p). \end{split}$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{C^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p) = D_{Tal}(x, A), \qquad A_l = A_{\sqrt{l}}^{Tal}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Second method, duality arguments :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\boldsymbol{\omega}: \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\boldsymbol{\mu},\boldsymbol{\nu}) := \inf_{\boldsymbol{\pi}\in \Pi(\boldsymbol{\mu},\boldsymbol{\nu})} \iint \boldsymbol{\omega}(\boldsymbol{x},\boldsymbol{y}) \boldsymbol{d}\boldsymbol{\pi}(\boldsymbol{x},\boldsymbol{y})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) d\pi(\mathbf{x},\mathbf{y}) = \sup_{(\boldsymbol{\varphi},\boldsymbol{\psi})} \left\{ \int \boldsymbol{\psi} \, d\mu - \int \boldsymbol{\varphi} \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

 $\psi(x) - \varphi(y) \leq \omega(x, y), \quad \forall x, y \in \mathcal{X}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\boldsymbol{\omega}: \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) d\pi(\mathbf{x},\mathbf{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

 $\psi(\mathbf{x}) - \boldsymbol{\varphi}(\mathbf{y}) \leq \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}.$

Given φ ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\boldsymbol{\omega}: \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(x) - \varphi(y) \leq \omega(x, y), \quad \forall x, y \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\boldsymbol{\omega}: \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) d\pi(\mathbf{x},\mathbf{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$
$$(\mu, \nu) = \sup_{\omega} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

This yields

 \mathcal{T}_{ω}

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\}. \end{aligned}$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$
$$\nu) = \sup \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) = \sup_{\varphi} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$

$$\varphi(x) = \sup \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\mu \right\}.$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) = \sup_{\varphi} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) = \sup_{\varphi} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

 $\mathcal{T}_{\omega}(\mu$

This yields

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\},\$$

$$,\nu) = \sup_{\mathcal{X}} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},\$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_{q}(\mu,\nu) = W_{q}^{-q}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^{q}(x,y) d\pi(x,y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$
$$\mu, \nu) = \sup_{\langle \varphi \rangle} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_q(\mu,\nu) = W_q^q(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^q(x,y) d\pi(x,y) = \inf_{(X,Y)} \mathbb{E}[d(X,Y)^q],$$

 $X \sim \mu, Y \sim \nu.$

This yields

 $\mathcal{T}_{\omega}($

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

This vields

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$
$$\mathcal{T}_{\omega}(\mu, \nu) = \sup_{v \in \mathcal{X}} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_q(\mu,\nu) = W_q^q(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^q(x,y) d\pi(x,y) = \inf_{(X,Y)} \mathbb{E}[d(X,Y)^q],$$

 $X \sim \mu, Y \sim \nu$. Duality holds with $Q\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + d^q(x, y)\}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs. We will see further...

The classical Kantorovich dual theorem

This yields

If $\omega : \mathcal{X} \times \mathcal{X} \rightarrow [0, +\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) d\pi(\mathbf{x},\mathbf{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$
$$\mathcal{T}_{\omega}(\mu, \nu) = \sup_{\varphi} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_{q}(\mu,\nu) = W_{q}^{q}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^{q}(x,y) d\pi(x,y) = \inf_{(X,Y)} \mathbb{E}[d(X,Y)^{q}],$$

 $X \sim \mu, Y \sim \nu$. Duality holds with $Q\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + d^q(x, y)\}$. Particular case : q = 1

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathbf{c} : & (x, p) & \mapsto & \mathbf{c}(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathbf{c} : & (\mathbf{x}, \mathbf{p}) & \mapsto & \mathbf{c}(\mathbf{x}, \mathbf{p}), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\boldsymbol{c}}(\nu|\mu) := \inf_{\substack{\boldsymbol{\pi} \in \Pi(\mu,\nu) \\ \boldsymbol{\pi} = \mu \oslash \boldsymbol{p}}} \int_{\boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}_{\boldsymbol{x}}) d\mu(\boldsymbol{x}), \quad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int \mathcal{C}(x, p_x) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int \mathcal{C}(x,p_x) d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For $c(x, p) = \int \omega(x, y) \, dp(y)$, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak cost

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int \mathcal{C}(x,p_x) d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For $c(x, p) = \int \omega(x, y) \, dp(y)$, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{\mathcal{H}}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0: For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_\omega(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \quad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_\omega(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For
$$c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$$
, with $\alpha : \mathbb{R} \to \mathbb{R}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \quad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_\omega(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \quad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu, \nu)} \iint \omega(x, y) \underbrace{dp_x(y) d\mu(x)}_{d\pi(x, y)} = \mathcal{T}_\omega(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu, \nu)} \iint \omega(x, y) \underbrace{dp_x(y) d\mu(x)}_{d\pi(x, y)} = \mathcal{T}_\omega(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1: For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$, $\tilde{\mathcal{T}}_\alpha(\nu|\mu)$ is Marton's cost (1996) (or Dembo's cost (1997) for other convex functions α).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1: For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$, $\tilde{\mathcal{T}}_\alpha(\nu|\mu)$ is Marton's cost (1996) (or Dembo's cost (1997) for other convex functions α).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

$\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

 $|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [0, +\infty],$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

ewens distribution deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_{c} \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_{X}) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_c \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x, \rho_{X}) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_{c} \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_c \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{\rho \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, d\rho + c(x, \rho) \right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_{X}) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_c \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(\mathbf{x})| \leq \mathbf{a} + \mathbf{b} \gamma(\mathbf{d}(\mathbf{x}, \mathbf{x}_0)), \quad \forall \mathbf{x} \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [\mathbf{0}, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathsf{C}(x,\mathsf{p}_{\mathsf{X}}) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_c \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold : $-p \mapsto c(x, p)$ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [\mathbf{0}, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x, p_{\mathsf{X}}) d\mu(x)$$

$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_{c} \varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold :

 $-p \mapsto c(x, p)$ is convex, - semi-continuity assumptions.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y)\pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$
with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathbf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\begin{split} \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ &= \sup_{\varphi} \left\{ \int \widetilde{Q}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathbf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\begin{split} \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ &= \sup_{\varphi} \left\{ \int \widetilde{\mathcal{Q}}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$\widetilde{Q}_{\alpha}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathbf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\begin{aligned} \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ &= \sup_{\varphi} \left\{ \int \widetilde{\mathcal{Q}}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{aligned}$$

with
$$\widetilde{Q}_{\alpha}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 2 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 2 : Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p \ll \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$\boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}) = \int \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}), \quad \text{if } \boldsymbol{p} << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{aligned} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(d(x,y)) \frac{dp_x}{d\mu_0}(y) \right) d\mu_0(y) d\mu(x) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{aligned}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p \ll \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}_{\boldsymbol{x}}}{d\mu_0}(\boldsymbol{y}) \right) \boldsymbol{d}\mu_0(\boldsymbol{y}) \boldsymbol{d}\mu(\boldsymbol{x}) \\ &\geq \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta}\varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},\,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p \ll \mu_0,$$

and $c(x, p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}_{\boldsymbol{x}}}{d\mu_{0}}(\boldsymbol{y}) \right) d\mu_{0}(\boldsymbol{y}) d\mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\hat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \hat{Q}_{\beta}\varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},$$
$$\hat{Q}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{aligned} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(d(x,y)) \frac{dp_x}{d\mu_0}(y) \right) d\mu_0(y) d\mu(x) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{aligned}$$

$$\widehat{\mathcal{T}}_{\beta}(
u|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta} \varphi(\mathbf{x}) \, d\mu(\mathbf{x}) - \int \varphi(\mathbf{y}) \, d\nu(\mathbf{y}) \right\},$$

$$\widehat{\mathsf{Q}}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}.$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x, p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}_{\boldsymbol{x}}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}) d\mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(
u|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta} \varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},$$

$$\widehat{Q}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

$$c(x,p) = \int \beta \left(\mathbf{1}_{x \neq y} \frac{dp}{d\mu_0}(y) \right) d\mu_0(y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p \ll \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \rightarrow [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}_{\boldsymbol{x}}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}) d\mu(\boldsymbol{x}) \\ &\geq \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathsf{Q}}_{\beta} \varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},\,$$

$$\widehat{\mathbf{Q}}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) \, d\mu_0(y) \right\}$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

$$c(x,p) = \int \beta \left(\mathbf{1}_{x \neq y} \frac{dp}{d\mu_0}(y) \right) d\mu_0(y)$$

used by Talagrand (1996) as a main ingredient to reach deviation inequalities for supremum of empirical processes with Bernstein's bounds, see also S. (2007).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Example 3 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$
with $\overline{Q}_{\theta} \varphi(x) = \inf_{p \in \mathcal{P}_1(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^{m}} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \left(x - z \right) \right\}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on R

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on R

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Theorem [GRST '15] : Examples of weak costs for which duality holds

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{\substack{p, \int y \, dp(y) = z}} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},$$

where the supremum runs over all convex Lipschitz functions $\overline{\varphi} : \mathbb{R}^m \to \mathbb{R}$ bounded from below,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

Theorem [GRST '15] : Examples of weak costs for which duality holds

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{\substack{p, \int y \, dp(y) = z}} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},$$

where the supremum runs over all convex Lipschitz functions $\overline{\varphi} : \mathbb{R}^m \to \mathbb{R}$ bounded from below, and $Q_{\theta}\overline{\varphi}$ is the usual infimum-convolution operator.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^n$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \psi \, d\mu - \int \psi \, d\nu \right\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_{1}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \psi \, d\mu - \int \psi \, d\nu \right\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^n$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_{1}$, $Q_{\theta}\psi = Q_{1}\psi$ is 1-Lipschitz,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \psi \, d\mu - \int \psi \, d\nu \right\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|]$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$;

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, d\mu \leqslant \int \psi \, d\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$. Then $\mu \leq_{\mathcal{C}} \nu$ if and only if

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Weak transport costs.12

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz, and if ψ is 1-Lipschitz then $Q_1\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$. Then $\mu \leq_C \nu$ if and only if there exists a martingale (X, Y) $(\mathbb{E}[Y|X] = X)$, where X follows the law μ and Y the law ν .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

For $\theta(x-z) = |x-z|^2$,

$$\begin{aligned} \overline{\mathcal{T}}_{\theta}(\nu|\mu) &= \overline{\mathcal{T}}_{2}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - \mathbb{E}[Y|X]|^{2}\right]. \\ W_{2}^{2}(\nu,\mu) &= \inf_{(X,Y)} \mathbb{E}\left[|X - Y|^{2}\right]. \end{aligned}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

For
$$\theta(x - z) = |x - z|^2$$
,
 $\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \overline{\mathcal{T}}_2(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - \mathbb{E}[Y|X]|^2\right]$

$$W_2^2(\nu,\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - Y|^2\right].$$

For fixed $\nu \in \mathcal{P}_2(\mathbb{R}^m)$ let

$$\mathcal{B}_{\nu} = \left\{ \eta \in \mathcal{P}_{1}(\mathbb{R}^{m}) \, | \, \eta \leq_{\mathbf{C}} \nu \right\}.$$

P-M. Samson

introduction

.

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

For
$$\theta(\mathbf{x} - \mathbf{z}) = |\mathbf{x} - \mathbf{z}|^2$$
,
 $\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \overline{\mathcal{T}}_2(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - \mathbb{E}[Y|X]|^2\right]$
 $W_2^2(\nu,\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - Y|^2\right]$.

For fixed $\nu \in \mathcal{P}_2(\mathbb{R}^m)$ let

$$\mathcal{B}_{\nu} = \left\{ \eta \in \mathcal{P}_{1}(\mathbb{R}^{m}) \, | \, \eta \leq_{\mathcal{C}} \nu \right\}.$$

Proposition : Gozlan-Juillet 2018, Alfonsi-Corbetta-Jourdain 2018

Given $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^m)$, there exists a unique probability measure $\overline{\mu} \in \mathcal{B}_{\nu}$ such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = W_{2}^{2}(\overline{\mu},\nu) = \inf_{\eta \in \mathcal{B}_{\nu}} W_{2}^{2}(\eta,\nu).$$

 $\overline{\mu}$ is called projection of μ on \mathcal{B}_{ν} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

For
$$\theta(\mathbf{x} - \mathbf{z}) = |\mathbf{x} - \mathbf{z}|^2$$
,
 $\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \overline{\mathcal{T}}_2(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - \mathbb{E}[Y|X]|^2\right]$
 $W_2^2(\nu,\mu) = \inf_{(X,Y)} \mathbb{E}\left[|X - Y|^2\right]$.

For fixed $\nu \in \mathcal{P}_2(\mathbb{R}^m)$ let

$$\mathcal{B}_{\nu} = \left\{ \eta \in \mathcal{P}_{1}(\mathbb{R}^{m}) \, | \, \eta \leq_{\mathcal{C}} \nu \right\}.$$

Proposition : Gozlan-Juillet 2018, Alfonsi-Corbetta-Jourdain 2018

Given $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^m)$, there exists a unique probability measure $\overline{\mu} \in \mathcal{B}_{\nu}$ such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = W_{2}^{2}(\overline{\mu},\nu) = \inf_{\eta \in \mathcal{B}_{\nu}} W_{2}^{2}(\eta,\nu).$$

 $\overline{\mu}$ is called projection of μ on \mathcal{B}_{ν} .

Theorem : (equality case) Gozlan-Juillet 2018 $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^m)$. With the above definitions,

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = W_{2}^{2}(\mu,\nu) \quad \Leftrightarrow \quad \overline{\mu} = \mu \quad \Leftrightarrow \quad \nu = \nabla \tau \# \mu,$$

where $\tau : \mathbb{R}^m \to \mathbb{R}$ is a convex function of class \mathcal{C}_1 such that $\nabla \tau$ is 1-Lipschitz.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

A complete statement for \overline{T}_2

Theorem : Gozlan-Juillet 2018, Backhoff-Veraguas-Beiglböck-Pammer 2018

• There exists $\psi^o : \mathbb{R}^m \to \mathbb{R}$ convex bounded from below such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = \int Q_{2}\psi^{o} d\mu - \int \psi^{o} d\nu.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A complete statement for \overline{T}_2

Theorem : Gozlan-Juillet 2018, Backhoff-Veraguas-Beiglböck-Pammer 2018

• There exists $\psi^o : \mathbb{R}^m \to \mathbb{R}$ convex bounded from below such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = \int Q_{2}\psi^{o} \, d\mu - \int \psi^{o} \, d\nu$$

• $\overline{\mu} = \nabla \tau^{o} \# \mu$ where

$$\tau^{o} = h^{\star}$$
 with $h(x) := \frac{\psi^{o}(x) + |x|^{2}}{2}, \quad x \in \mathbb{R}^{m}.$

(recall that $h^{\star}(y) = \sup_{x \in \mathbb{R}^m} \{x.y - h(y)\}$.) $\nabla \tau^o$ is 1-Lipschitz.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A complete statement for \overline{T}_2

Theorem : Gozlan-Juillet 2018, Backhoff-Veraguas-Beiglböck-Pammer 2018

• There exists $\psi^o : \mathbb{R}^m \to \mathbb{R}$ convex bounded from below such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = \int Q_{2}\psi^{o} \, d\mu - \int \psi^{o} \, d\nu$$

• $\overline{\mu} = \nabla \tau^{o} \# \mu$ where

$$\tau^o = h^\star$$
 with $h(x) := \frac{\psi^o(x) + |x|^2}{2}, \quad x \in \mathbb{R}^m.$

(recall that $h^*(y) = \sup_{x \in \mathbb{R}^m} \{x.y - h(y)\}$.) $\nabla \tau^o$ is 1-Lipschitz.

• If (X, Y) is a coupling of μ and ν such that

$$\overline{\mathcal{T}}_{2}(\nu|\mu) = \mathbb{E}\left[|\boldsymbol{X} - \mathbb{E}[\boldsymbol{Y}|\boldsymbol{X}]|^{2}\right],$$

then $\mathbb{E}[Y|X]$ has law $\overline{\mu}$ and $\mathbb{E}[Y|X] = \nabla \tau^o(X)$ almost surely.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 4 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport

inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.15

Example 4 : The martingale transport problem on the line.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{C} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_X(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{\textit{mart}}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{\textit{mart}}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{C} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

introduction

Ewens distribution deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_x) d\mu(x),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x),$$

with $c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\begin{aligned} \mathcal{T}_{\omega}^{mart}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\} \\ &= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x), \end{aligned}$$

with $c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$. The cost *c* is convex in *p*.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
```

deviation inequalities

```
The Schrödinger
minimization problem
definition
curvature in discrete spaces
```

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{\textit{mart}}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{\textit{mart}}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x),$$

with $c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$. The cost *c* is convex in *p*. The dual Kantorovich Theorem for weak cost applies

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

deviation inequalities

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
```

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x),$$

with $c(x, p) := \int \omega(x, y) dp(y) + i(x, p)$. The cost *c* is convex in *p*. The dual Kantorovich Theorem for weak cost applies and we recover the duality result by Beighböck-Henry-Labordère-Penker (2013).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Duality for martingale costs

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint w\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint w\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y - x) d\pi(x, y) = 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -W$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -W$. $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint W d\pi = -\mathcal{T}_{\omega}^{mart}(\nu | \mu)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x,y) = 0.$ For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w.$ $\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w d\pi = -\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{g} \left\{ \int (-R_{c}g) d\mu + \int g d\nu \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,

$$\int h(x)(y-x) d\pi(x, y) = 0.$$
For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w.$

$$\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi = -\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{g} \left\{ \int (-R_{c}g) d\mu + \int g d\nu \right\}$$

$$\geq \int (-R_{c}g_{0}) d\mu + \int g_{0} d\nu - \varepsilon.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x,y) = 0.$ For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$. $\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w \, d\pi \geq \int (-R_c g_0) \, d\mu + \int g_0 \, d\nu - \varepsilon.$

Observe that $i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0.$ For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w.$ $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi \geq \int (-R_c g_0) d\mu + \int g_0 d\nu - \varepsilon.$ Observe that $i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y dp(y) - x \right)$, it follows that

 $f_0(x) := -R_c g_0(x)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w \, d\pi \geq \int (-R_c g_0) \, d\mu + \int g_0 \, d\nu - \varepsilon$.

Observe that $i(x,p) = \sup_{\substack{\gamma \in \mathbb{R} \\ p \in \mathbb{R}}} \gamma \cdot \left(\int y \, dp(y) - x \right)$, it follows that $f_0(x) := -R_c g_0(x) = \sup_p \inf_{\substack{\gamma \in \mathbb{R} \\ \gamma \in \mathbb{R}}} \left\{ -\int g_0 \, dp + \int w(x,y) \, dp(y) - \int \gamma \cdot (y-x) \, dp(y) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities examples

characterisation on R

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

$$\begin{aligned} &\text{idea of the proof : The inequality} \leqslant \text{ is obvious since for all } \pi \in \Pi^{mart}(\mu,\nu), \\ &\int h(x)(y-x) \, d\pi(x,y) = 0. \end{aligned} \\ &\text{For the reverse inequality} \geqslant \text{: let } \varepsilon > 0, \, \omega = -w. \\ &\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w \, d\pi \geqslant \int (-R_c g_0) \, d\mu + \int g_0 \, d\nu - \varepsilon. \end{aligned} \\ &\text{Observe that} \quad i(x,p) = \sup_{\substack{\gamma \in \mathbb{R} \\ p \ \gamma \in \mathbb{R}}} \gamma \cdot \left(\int y \, dp(y) - x \right), \text{ it follows that} \\ &f_0(x) := -R_c g_0(x) = \sup_{\substack{p \ \gamma \in \mathbb{R} \\ y \ \gamma \in \mathbb{R}}} \left\{ - \int g_0 dp + \int w(x,y) dp(y) - \int \gamma \cdot (y-x) dp(y) \right\} \\ &= \inf_{\substack{\gamma \in \mathbb{R} \\ y \ \gamma \in \mathbb{R}}} \sup_{y} \left\{ -g_0(y) + w(x,y) - \gamma \cdot (y-x) \right\} \\ &\geqslant -g_0(y) + w(x,y) - \gamma(x) \cdot (y-x) - \varepsilon. \end{aligned}$$

curvature in discrete spaces

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results

Martingale costs

```
Weak transport
inequalities
 Dual characterization
 to concentration
```

Barycentric transport inequalities examples

characterisation on P

The Schrödinger

```
Transport inequality on
the symmetric group
 introduction
 Ewens distribution
 deviation inequalities
```

minimization problem definition

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

$$\begin{aligned} \text{idea of the proof : The inequality } &\leq \text{ is obvious since for all } \pi \in \Pi^{mart}(\mu,\nu), \\ \int h(x)(y-x) \, d\pi(x,y) &= 0. \end{aligned}$$

$$\begin{aligned} \sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w \, d\pi &\geq \int (-R_c g_0) \, d\mu + \int g_0 \, d\nu - \varepsilon. \end{aligned}$$

$$\begin{aligned} \text{Observe that} \quad i(x,p) &= \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right), \end{aligned}$$

$$\begin{aligned} \text{it follows that} \quad f_0(x) &:= -R_c g_0(x) = \sup_{p} \inf_{\gamma \in \mathbb{R}} \left\{ -\int g_0 \, dp + \int w(x,y) \, dp(y) - \int \gamma \cdot (y-x) \, dp(y) \right\} \end{aligned}$$

$$\begin{aligned} &= \inf_{\gamma \in \mathbb{R}} \sup_{y} \left\{ -g_0(y) + w(x,y) - \gamma \cdot (y-x) \right\} \\ &\geq -g_0(y) + w(x,y) - \gamma(x) \cdot (y-x) - \varepsilon. \end{aligned}$$

$$\begin{aligned} &\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w \, d\pi \geq \inf_{f_0,g_0,\gamma} \left\{ \int f_0 \, d\mu + \int g_0 \, d\nu \right\} - \varepsilon, \end{aligned}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on R

```
Fransport inequality on
he symmetric group
introduction
Ewens distribution
deviation inequalities
```

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\tau\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,\gamma}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, γ such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + \gamma(x)(y - x)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities examples

characterisation on R

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

The Schrödinger minimization problem definition curvature in discrete spaces

Weak transport costs.16

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.17

A well known example : Pinsker ⇔

Inégalité exponentielle (Hoeffding).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $\mathbf{T}_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant \mathbf{a}_1 H(\nu_1|\mu) + \mathbf{a}_2 H(\nu_2|\mu) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality : $\tilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0, 1).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality : $\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality : $\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities. If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $\mathbf{T}_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality : $\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities.

If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

i)
$$\mu$$
 satisfies **T**_c(a_1, a_2) ($a_1, a_2 > 0$)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $\mathbf{T}_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

 $\text{Marton's inequality}: \widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities.

If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

- i) μ satisfies **T**_c(a_1, a_2) ($a_1, a_2 > 0$)
- ii) For all functions $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}} d\mu\right)^{a_{2}} \left(\int e^{-\frac{\varphi}{a_{1}}} d\mu\right)^{a_{1}} \leq 1$$

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{\int \varphi(y) dp(y) + c(x,p)\right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

A well known example : Pinsker ⇔ Inégalité exponentielle (Hoeffding).

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

 $\text{Marton's inequality}: \widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities.

If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

- i) μ satisfies **T**_c(a_1, a_2) ($a_1, a_2 > 0$)
- ii) For all functions $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\left(\int e^{\frac{B_{C}\varphi}{a_2}} d\mu\right)^{a_2} \left(\int e^{-\frac{\varphi}{a_1}} d\mu\right)^{a_1} \leq 1$$
$$B_{C}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{\int \varphi(y) dp(y) + c(x,p)\right\}, \qquad x \in \mathcal{X}.$$

ii) is a generalisation of the so-called (convex) τ -property introduced by Maurey (1990) to recover Talagrand's concentration results.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.18

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

 $\mathcal{T}_{c}(\nu_{1}|\nu_{2}) \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger

minimization problem definition curvature in discrete spaces

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{c}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{c}}\varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_2\left(\int \frac{R_c\varphi}{a_2}\,d\nu_2-H(\nu_2|\mu)\right)+a_1\left(\int -\frac{\varphi}{a_1}\,d\nu_1-H(\nu_1|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_{2}\left(\int \frac{R_{c}\varphi}{a_{2}}\,d\nu_{2}-H(\nu_{2}|\mu)\right)+a_{1}\left(\int -\frac{\varphi}{a_{1}}\,d\nu_{1}-H(\nu_{1}|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{c}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{c}}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_2\left(\int \frac{R_c\varphi}{a_2}\,d\nu_2-H(\nu_2|\mu)\right)+a_1\left(\int -\frac{\varphi}{a_1}\,d\nu_1-H(\nu_1|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_{2}\left(\int \frac{R_{c}\varphi}{a_{2}}\,d\nu_{2}-H(\nu_{2}|\mu)\right)+a_{1}\left(\int -\frac{\varphi}{a_{1}}\,d\nu_{1}-H(\nu_{1}|\mu)\right)\leqslant 0.$$

By optimizing over all ν_1, ν_2 we get

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} \, d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} \, d\nu_1 - H(\nu_1 | \mu) \right\} \leq 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}} \varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} \, d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} \, d\nu_1 - H(\nu_1 | \mu) \right\} \leqslant 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(X),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}} \varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} d\nu_1 - H(\nu_1 | \mu) \right\} \leq 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(\mathcal{X}),$$

it follows that

$$a_2\log\int e^{R_c\varphi/a_2}\,d\mu+a_1\log\int e^{-\varphi/a_1}\,d\mu\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

deviation mequalities

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leq a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} \, d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} \, d\nu_1 - H(\nu_1 | \mu) \right\} \leqslant 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(\mathcal{X}),$$

it follows that

$$a_2\log\int e^{R_c\varphi/a_2}\,d\mu+a_1\log\int e^{-\varphi/a_1}\,d\mu\leqslant 0.$$

or equivalently

$$\left(\int e^{R_c \varphi/a_2} \, d\mu\right)^{a_2} \left(\int e^{-\varphi/a_1} \, d\mu\right)^{a_1} \leqslant 1$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.19

We assume that for all measurable functions $\varphi : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where $R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strasson's result Further results

Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where $R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$

Let $A \subset \mathcal{X}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Further results

Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{\mathcal{A}}(x) := \begin{cases} 0 \text{ if } x \in \mathcal{A}, \\ +\infty \text{ otherwise,} \end{cases}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_c\varphi}{a_2}}d\mu\right)^{a_2}\left(\int e^{-\frac{\varphi}{a_1}}d\mu\right)^{a_1}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A}dp + c(x,p) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A} dp + c(x, p) \right\} = \inf_{p, p(A) = 1} c(x, p)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A}dp + c(x,p) \right\} = \inf_{p,p(A)=1} c(x,p) := c(x,A)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport

inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{\mathcal{A}}(x) := \begin{cases} 0 \text{ if } x \in \mathcal{A}, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_A}{a_1}} d\mu = \mu(A)$,

and
$$R_c i_A(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x, p) \right\} = \inf_{p, p(A) = 1} c(x, p) := c(x, A),$$

we get the following type of Talagrand's concentration result

$$\left(\int e^{\frac{c(x,A)}{a_2}} d\mu(x)\right)^{a_2} \mu(A)^{a_1} \leqslant 1.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{\mathcal{C}}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where
$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}} d\mu(x)\right)^{a_2} \mu(A)^{a_1} \leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X} \setminus \mathbf{A}_t) = \mu(\{\mathbf{x} \in \mathcal{X}, \mathbf{C}(\mathbf{x}, \mathbf{A}) > t\})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_{A}}{a_{1}}} d\mu &= \mu(A), \\ \text{and } R_{c}i_{A}(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A} dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\setminus A_t) = \mu(\{x \in \mathcal{X}, \mathbf{C}(x, A) > t\}) \leq e^{-t/a_2} \int e^{\frac{\mathbf{C}(x, A)}{a_2}} d\mu(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{\mathcal{C}}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\backslash A_t) = \mu\big(\{x \in \mathcal{X}, c(x, A) > t\}\big) \leq e^{-t/a_2} \int e^{\frac{c(x, A)}{a_2}} d\mu(x).$$

It follows that $\mu(\mathcal{X}\setminus A_t)^{a_2}\mu(A)^{a_1} \leq e^{-t}, \quad \forall t > 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{\mathcal{C}}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\backslash A_t) = \mu\big(\{x \in \mathcal{X}, c(x, A) > t\}\big) \leq e^{-t/a_2} \int e^{\frac{c(x, A)}{a_2}} d\mu(x).$$

It follows that $\mu(\mathcal{X}\setminus A_t)^{a_2}\mu(A)^{a_1} \leqslant e^{-t}, \quad \forall t > 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.20

Examples of weak transport-entropy inequalities in discrete spaces

Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

Examples of weak transport-entropy inequalities in discrete spaces

Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$\mathcal{C}_{\mathcal{S}}(x,p) = \theta_{\mathcal{S}}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{\mathbf{T}}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on \mathbb{R}

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on \mathbb{R}

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_{s}(h) \sim_{0^{+}} \frac{h^{2}}{2(1-q)}$, and $\theta_{s}(h) \sim_{0^{-}} \frac{h^{2}}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$\mathcal{C}_{\mathcal{S},n}(x,p) = n \theta_{\mathcal{S}}\left(\frac{1}{n}\left(x - \int y dp(y)\right)\right), \qquad x \in \{0,1,\ldots,n\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$\mathcal{C}_{s,n}(x,p) = n\theta_s\left(\frac{1}{n}\left(x-\int ydp(y)\right)\right), \qquad x\in\{0,1,\ldots,n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$C_{s,n}(x,p) = n\theta_s\left(\frac{1}{n}\left(x - \int ydp(y)\right)\right), \qquad x \in \{0,1,\ldots,n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_{\mathcal{S}}(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_{\mathcal{S}}(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$C_{s,n}(x,p) = n\theta_s\left(\frac{1}{n}\left(x - \int ydp(y)\right)\right), \qquad x \in \{0,1,\ldots,n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

Choose $q = \lambda/n$, $\lambda > 0$, and use the weak convergence as $n \to +\infty$ of the binomial law $\mu_{\lambda/n,n}$ to the Poisson measure $p_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, $k \in \mathbb{N}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
deviation inequalities
```

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.21

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

 $\theta(t) = t^2$, $\forall t \leq t_o$, for some $t_o > 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_0$, for some $t_0 > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{\textit{a}}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{\textit{a}}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0,

 $\sup_{x}(\boldsymbol{U}_{\mu}(x+u)-\boldsymbol{U}_{\mu}(x))\leqslant\frac{1}{b}\theta^{-1}(u+t_{o}^{2}),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

 $\begin{array}{ll} \text{ii) There exists } b > 0 \text{ such that for all } u > 0, \\ & \sup_{x} (U_{\mu}(x+u) - U_{\mu}(x)) \leqslant \frac{1}{b} \theta^{-1}(u+t_{o}^{2}), \\ & \text{where } \qquad U_{\mu}(x) := \left\{ \begin{array}{ll} F_{\mu}^{-1} \left(1 - \frac{1}{2} e^{-|x|}\right), & \text{if } x \geqslant 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leqslant 0. \end{array} \right. \end{array} \right.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{x} (U_{\mu}(x + u) - U_{\mu}(x)) \leq \frac{1}{b} \theta^{-1}(u + t_{0}^{2}),$ where $U_{\mu}(x) := \begin{cases} F_{\mu}^{-1} \left(1 - \frac{1}{2}e^{-|x|}\right), & \text{if } x \geq 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leq 0. \end{cases}$

Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric probability measure with log-concave tails satisfies a barycentric transport inequality with optimal cost, up to a universal constant.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2, \quad \forall t \leq t_0, \text{ for some } t_0 > 0.$$

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{x} (U_{\mu}(x+u) - U_{\mu}(x)) \leq \frac{1}{b} \theta^{-1}(u+t_{0}^{2}),$ where $U_{\mu}(x) := \begin{cases} F_{\mu}^{-1} \left(1 - \frac{1}{2}e^{-|x|}\right), & \text{if } x \geq 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leq 0. \end{cases}$

Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric probability measure with log-concave tails satisfies a barycentric transport inequality with optimal cost, up to a universal constant.

 \rightarrow comparison results for weak and strong moments for random vectors of independent coordinates with log-concave tails.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities examples

characterisation on R

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}, \qquad \sigma, \tau \in S_{n}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{\mathcal{H}}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}, \qquad \sigma, \tau \in S_{n}$$

 μ_o : the uniform distribution on S_n ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}, \qquad \sigma, \tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(\mathbf{A}_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, d_H(\sigma, A) \leq t \}, \quad d_H(\sigma, A) = \inf_{\tau \in A} d_H(\sigma, \tau).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, d_H(\sigma, A) \leq t \}, \quad d_H(\sigma, A) = \inf_{\tau \in A} d_H(\sigma, \tau).$

Proof based on Hoeffding's inequality - martingale method.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, \mathbf{d}_H(\sigma, A) \leq t \}, \quad \mathbf{d}_H(\sigma, A) = \inf_{\tau \in A} \mathbf{d}_H(\sigma, \tau).$

Proof based on Hoeffding's inequality - martingale method.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

```
Weak transport
inequalities
Dual characterization
to concentration
```

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.23

Convex-hull method on S_n :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$\boldsymbol{d}_{\boldsymbol{H}}(\boldsymbol{\sigma},\boldsymbol{A}) := \inf_{\tau \in \boldsymbol{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\rho \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\rho(\tau).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\boldsymbol{p} \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\boldsymbol{p}(\tau).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\mathcal{P} \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\mathcal{P}(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad \boldsymbol{c}(\sigma, \boldsymbol{A}) := \inf_{\boldsymbol{p} \in \mathcal{P}(\boldsymbol{A})} \boldsymbol{c}(\sigma, \boldsymbol{p}) = \inf_{\boldsymbol{p} \in \mathcal{P}(\boldsymbol{A})} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\boldsymbol{p}(\tau) \right)^2$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{S_n} e^{c(\sigma,A)/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(A)}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{}_{\substack{\rho \in \mathcal{P}(A)}} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leqslant \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(\mathbf{A}_{c,r}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{}_{\substack{\rho \in \mathcal{P}(A)}} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{S_n} e^{c(\sigma,A)/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(A)}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(\boldsymbol{A_{c,r}}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(\boldsymbol{A_{c,r}}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$.

 $A_{c,r} \subset A_{\sqrt{nr}},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, A) := \inf_{\tau \in A} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{\mathcal{C}(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leqslant \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(A_t) \ge \mu_o(A_{c,r}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$.

 $A_{c,r} \subset A_{\sqrt{nr}}$, setting $t = \sqrt{nr}$ we recover Maurey's concentration inequality.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Weak transport costs.24

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .
 - **2** We prove some "weak" transport-entropy inequalities for $\mu \in \mathcal{M}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Extension to subgroups of S_n, and for non-uniform probability measures

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .
 - 2 We prove some "weak" transport-entropy inequalities for $\mu \in \mathcal{M}$,

Transport-entropy inequalities for $\mu \implies$ Concentration properties for μ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\boldsymbol{\theta}^{|\boldsymbol{\sigma}|}}{\boldsymbol{\theta}^{(n)}}, \boldsymbol{\sigma} \in S_{n}$$

where

• $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\boldsymbol{\theta}^{|\sigma|}}{\boldsymbol{\theta}^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\boldsymbol{\theta}^{|\sigma|}}{\boldsymbol{\theta}^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds.$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds.$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

Particular case : $\theta = 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on the symmetric group introduction
```

Ewens distribution deviation inequalities

```
The Schrödinger
minimization problem
definition
curvature in discrete spaces
```

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds.$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

Particular case : $\theta = 1$, μ^{θ} is the uniform distribution on S_n , $\mu^{\theta} = \mu_o$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on the symmetric group introduction
```

Ewens distribution deviation inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Let us define the weak-transport cost :

 $\widehat{T}_2(\nu_2|\nu_1)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \widehat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{S}_n),$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{\mathbf{Q}}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\widehat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \widehat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\widehat{\mathbf{Q}}_{\varphi}(\sigma) = \inf_{p \in \mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \widehat{\mathbf{c}}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\widehat{\mathbf{c}}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^2.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \widehat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$

where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1})$ and $\mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \widehat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$

where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1})$ and $\mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \widehat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$

where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1})$ and $\mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$

where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int 1_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process.

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1})$ and $\mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$

where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1})$ and $\mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on P

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

$$\left(\int_{S_n} e^{s \hat{Q} \varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Application to concentration on S_n

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

$$\left(\int_{S_n} e^{s \widehat{Q} \varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^n \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that

$$\begin{split} \widetilde{\mathbf{Q}}\varphi(\sigma) &= \inf_{\boldsymbol{p}\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) d\boldsymbol{p}(\tau) + \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) \right)^2 \right\} \\ &\geqslant \varphi(\sigma) - \sup_{\boldsymbol{p}} \sum_{i=1}^n \left[\alpha_i(\sigma) \int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) - \frac{1}{20} \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) \right)^2 \right] \\ &\geqslant \varphi(\sigma) - \sum_{i=1}^n \sup_{l\geq 0} \left\{ \alpha_i(\sigma) l - \frac{l^2}{20} \right\} \\ &= \varphi(\sigma) - 5 \sum_{i=1}^n \alpha_i^2(\sigma) \\ &= \varphi(\sigma) - 5 |\boldsymbol{\alpha}(\sigma)|_2^2, \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^\theta\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^\theta\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \qquad \forall \sigma, \tau \in S_n.$$

It follows that

 $\widetilde{\boldsymbol{Q}}\varphi(\sigma) \geq \varphi(\sigma) - 5|\alpha(\sigma)|_2^2,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{\mathbf{Q}}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that $\widetilde{\mathbf{Q}}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$, Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that $\widetilde{\mathbf{Q}}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$, Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

As $s \rightarrow 0$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

As
$$s \to 0$$
, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \leqslant 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

.....

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.

As $s \rightarrow 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

Application to concentration on S_n

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \qquad \forall \sigma, \tau \in S_n.$$

It follows that
$$\tilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\tilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.
As $s \to 1$, $\int e^{\tilde{Q}\varphi} d\mu \ e^{-\mu(\varphi)} \le 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Application to concentration on S_n

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \qquad \forall \sigma, \tau \in S_n.$$

It follows that
$$\tilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\tilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.
As $s \to 1$, $\int e^{\tilde{Q}\varphi} d\mu \ e^{-\mu(\varphi)} \le 1$, $\int e^{\varphi - 5|\alpha|_2^2} d\mu \le e^{\mu(\varphi)}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities

Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

curvature in discrete spaces

Weak transport costs.28

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh k in the cycle decomposition of σ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh *k* in the cycle decomposition of σ . $|\sigma|_1$: the number of fixed points by σ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

Weak transport costs.28

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh *k* in the cycle decomposition of σ . $|\sigma|_1$: the number of fixed points by σ .

Let
$$m_k = \int |\sigma|_k d\mu(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

L

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh *k* in the cycle decomposition of σ . $|\sigma|_1$: the number of fixed points by σ .

et
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Examples of configuration functions on S_n .

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$

and

$$\mu^{\theta}(|\sigma|_{k} \ge \underline{m}_{k} + t) \leqslant \exp\left(-\frac{t^{2}}{20k(\underline{m}_{k} + t)}\right).$$

•

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Examples of configuration functions on S_n .

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
$$\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$$

and

$$\mu^{\theta}(|\sigma|_k \ge m_k + t) \le \exp\left(-\frac{t^2}{20k(m_k + t)}\right).$$

•
$$\varphi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} a_{k,\sigma(k)}^{t}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$

and

$$\mu^{\theta}(|\sigma|_k \ge m_k + t) \le \exp\left(-\frac{t^2}{20k(m_k + t)}\right).$$

•
$$\varphi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} a_{k,\sigma(k)}^{t}$$
, with $0 \leq a_{k,\sigma(k)}^{t} \leq M$, then for all $t \geq 0$,

$$\mu^{ heta}(\varphi \leqslant \mu^{ heta}(\varphi) - t) \leqslant \exp\left(-rac{t^2}{20\mu^{ heta}(\psi)}
ight),$$

and

$$\mu^{\theta}(\varphi \ge \mu^{\theta}(\varphi) + t) \le \exp\left(-\frac{t^2}{20(\mu^{\theta}(\psi) + Mt)}\right),$$

where
$$\psi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} (a_{k,\sigma(k)}^{t})^{2} \leq M\varphi(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition curvature in discrete spaces

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 \mathcal{X} : the state space of an homogenous Markov process,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 ${\mathcal X}$: the state space of an homogenous Markov process, ${\mathcal X}$ is discrete.

L : the infinitesimal generator.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

- L: the infinitesimal generator.
- $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y)=m(y)L(y,x).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x).$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x)$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

 $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited , right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x)$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

 $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited , right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

 $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited , right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t : \omega \mapsto \omega_t$ For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}.$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{\Omega}^{\gamma} = m$ and generator L^{γ} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

$$\mathbf{R}_t^{\gamma} = \mathbf{m}, \qquad \forall t \in [0, 1].$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \chi^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}.$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

 $\boldsymbol{R}_t^{\boldsymbol{\gamma}} = \boldsymbol{m}, \qquad \forall t \in [0, 1].$

 $R_{0,1}^{\gamma} := (X_0, X_1) \# R^{\gamma},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 ${\mathcal X}$: the state space of an homogenous Markov process, ${\mathcal X}$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \chi^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

 $\boldsymbol{R}_t^{\boldsymbol{\gamma}} = \boldsymbol{m}, \qquad \forall t \in [0, 1].$

$$\begin{split} R^{\gamma}_{0,1} &:= (X_0, X_1) \# R^{\gamma}, \text{ for all } x, y \in \mathcal{X}, \\ R^{\gamma}_{0,1}(x, y) &= m(x) P_{\gamma}(x, y), \qquad R^{\gamma}_{0,1} = m \oslash P_{\gamma}. \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to m.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

The dynamic Schrödinger problem associated to R^γ is

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

 The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

- 1 The dynamic and static Schrödinger problems have same minimum value,
 - $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$
- **2** The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

• The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\hat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0 = x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1 = y) = h_1(y). \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0 = x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1 = y) = h_1(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

```
Transport inequality on
the symmetric group
introduction
```

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to \mathbb{R}^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0=x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1=y) = h_1(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{cases}$

The static problem is reached for

$$\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to \mathbb{R}^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0=x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1=y) = h_1(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{cases}$

The static problem is reached for

 $\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$

For all $x, y \in \mathcal{X}$,

 $\widehat{Q}_{0,1}^{\gamma}(x,y) = f(x)g(y)R_{0,1}^{\gamma}(x,y)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

```
Transport inequality on
the symmetric group
introduction
```

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\left\{ \begin{array}{l} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0=x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1=y) = h_1(y). \end{array} \right. \left\{ \begin{array}{l} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{array} \right.$

The static problem is reached for

$$\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$$

For all $x, y \in \mathcal{X}$,

 $\widehat{Q}_{0,1}^{\gamma}(x,y) = f(x)g(y)R_{0,1}^{\gamma}(x,y) = f(x)g(y)m(x)P_{\gamma}(x,y).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

```
Transport inequality on
the symmetric group
introduction
Ewens distribution
```

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

 $H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash \rho|m \oslash P^{\gamma})$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma})d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int R_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},\,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{S}(\mu_{1}|\mu_{0}) = \sup_{\psi} \left\{ \int R_{c}\psi \, d\mu_{0} - \int \psi \, d\mu_{1} \right\},$$

with $R_{c}\psi(x) = \inf_{\rho \in \mathcal{P}(X)} \left\{ \int \psi \, d\rho + H(\rho|P_{X}^{\gamma}) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma}) d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int R_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},$$

with
$$R_c\psi(x) = \inf_{p\in\mathcal{P}(X)} \left\{ \int \psi dp + H(p|P_x^{\gamma}) \right\} = -\log P^{\gamma}(e^{-\psi})(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int R_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},$$

with
$$R_c\psi(x) = \inf_{\rho\in\mathcal{P}(X)} \left\{ \int \psi d\rho + H(\rho|P_x^{\gamma}) \right\} = -\log P^{\gamma}(e^{-\psi})(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

Question : Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

• The Bakry-Emery curvature condition (1985) - Γ₂-calculus,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

 The Bakry-Emery curvature condition (1985) - Γ₂-calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ₂-calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- · Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

We will focus on the approach by C. Leonard in discrete,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem definition

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities ,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- · Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

We will focus on the approach by C. Leonard in discrete, following the recent approach by G. Conforti (2018) in continuous spaces when *L* is a diffusion generator $Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Further results Martingale costs

Weak transport inequalities Dual characterization to concentration

Barycentric transport inequalities

examples

characterisation on ${\mathbb R}$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem definition