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Can deal with discrete measures tions

Con: hard to compute Need a more practical proxy

Not an integral probability metric



Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z




Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z

Objective: provide estimates for | fdpu, for various functions f.



Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z

Objective: provide a function v close to u s.t. Wa(v, 1) is small.



Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z

Objective: provide a function v close to u s.t. Wa(v, 1) is small.

Option 1: Langevin Monte-Carlo

Sample n points from X}, where X§ =0 and

X, = —hVV(X]) + V2hZ, Z ~ N(0,1)



Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z

Objective: provide a function v close to u s.t. Wa(v, 1) is small.

Option 1: Langevin Monte-Carlo
Sample n points from X}, where X§ =0 and

X, =—hVV(XP) +V2hZ,Z ~ N(0,1)

Can achieve any given acuracy with correct h, K, n but slow in practice



Bayesian inference

14 is a measure on RY such that
od>>1

—Vi(x)

* du(x) = =——dx with unknown Z

Objective: provide a function v close to u s.t. Wa(v, 1) is small.

Option 1: Langevin Monte-Carlo
Sample n points from X}, where X§ =0 and
X, =—hVV(XP) +V2hZ,Z ~ N(0,1)

Can achieve any given acuracy with correct h, K, n but slow in practice

Option 2: Variational inference

Find v in a simple family of measure minimizing K L(v|u). (Simple
optimization problem)



Bayesian inference

14 is a measure on RY such that
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Objective: provide a function v close to u s.t. Wa(v, 1) is small.

Option 1: Langevin Monte-Carlo
Sample n points from X}, where X§ =0 and
X, =—hVV(XP) +V2hZ,Z ~ N(0,1)

Can achieve any given acuracy with correct h, K, n but slow in practice

Option 2: Variational inference

Find v in a simple family of measure minimizing K L(v|u). (Simple
optimization problem)

Fast but limited accuracy
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1t stationary measure of the diffusion process solution of
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Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?
If Xog ~v, X} ~ vy = hydu evolves given the SDE above.
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Stein variational gradient descent

dea: find an approximation (v )ken of (v4)¢>0 and approximate vy for T
arge enough.

Problem: (14)¢>0 tends to “diffuse” so it is hard to approximate through a
discrete measure.

Solution: smooth the mass movement using a kernel K.

= if dv} = fdu, move the mass at point x by
—h/K(w,y)Vlogf(y)dV(y) = h/—VV(y)K(w,y)+VK(x,y)dv<

Algorithm:

h

e start with some discrete measure ) with n particles X7, ... X?.

update the position of the particle X~ with

h
X = XF+ =N —VV(XHK(XF, XF) + VE(XF, XF)
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Exisiting results:

e for vy continuous, SVGD is an approximation of a gradient flow in
the space of measures.

e there are guarantees for the speed of convergence of this process.
(Depends on K).

e fort > 0, a discrete-time approximation can be used to approximate
vy but with a continuous 1.

o If vy is discrete with IV particles, then the previous result is true as
N — oo.

Desirable results:

e Non-asymptotic result w.r.t. N for the measure obtained after con-
vergence of SV GD for a standard metric W5.

= Choice of K.
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