Thomas Bonis

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y)$$
,

where the infimum is taken over all measures with marginals μ and ν .

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y),$$

where the infimum is taken over all measures with marginals μ and ν .

Wasserstein distance between two measures μ and ν

$$W_2(\mu, \nu)^2 = \inf_{\pi} \int ||y - x||^2 d\pi(x, y),$$

where the infimum is taken over all measures with marginals μ and ν .

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y),$$

where the infimum is taken over all measures with marginals μ and ν .

 $W_2 = \text{mean length of matching.}$

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y)$$
,

where the infimum is taken over all measures with marginals μ and $\nu.$

Pros:

Well-suited for multivariate analysis

Can deal with discrete measures

Con: hard to compute

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y)$$
,

where the infimum is taken over all measures with marginals μ and $\nu.$

Pros:

Con: hard to compute

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y)$$
,

where the infimum is taken over all measures with marginals μ and $\nu.$

Pros: Well-suited for multivariate analysis Can deal with discrete measures

Con: hard to compute Need a more practical proxy

Wasserstein distance between two measures μ and ν

$$W_2(\mu,\nu)^2 = \inf_{\pi} \int ||y-x||^2 d\pi(x,y)$$
,

where the infimum is taken over all measures with marginals μ and $\nu.$

Pros: Well-suited for multivariate analysis Can deal with discrete measures

Con: hard to compute Need a more practical proxy

Not an integral probability metric

 μ is a measure on \mathbb{R}^d such that

 $\bullet \; d >> 1$

•
$$d\mu(x) = \frac{e^{-V(x)}}{Z} dx$$
 with unknown Z

 μ is a measure on \mathbb{R}^d such that

 $\bullet \ d >> 1$

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide estimates for $\int f d\mu$, for various functions f.

 μ is a measure on \mathbb{R}^d such that

 $\bullet \ d >> 1$

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide a function ν close to μ s.t. $W_2(\nu,\mu)$ is small.

 μ is a measure on \mathbb{R}^d such that

• d >> 1

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide a function ν close to μ s.t. $W_2(\nu,\mu)$ is small.

Option 1: Langevin Monte-Carlo

Sample n points from X_{K+1}^h where $X_0^h = 0$ and $X_{k+1}^h = -h\nabla V(X_k^h) + \sqrt{2h}Z, Z \sim \mathcal{N}(0, 1)$

 μ is a measure on \mathbb{R}^d such that

• d >> 1

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide a function ν close to μ s.t. $W_2(\nu,\mu)$ is small.

Option 1: Langevin Monte-Carlo

Sample *n* points from X_{K+1}^h where $X_0^h = 0$ and

$$X_{k+1}^h = -h\nabla V(X_k^h) + \sqrt{2h}Z, Z \sim \mathcal{N}(0, 1)$$

Can achieve any given acuracy with correct h, K, n but slow in practice

 μ is a measure on \mathbb{R}^d such that

• d >> 1

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide a function ν close to μ s.t. $W_2(\nu,\mu)$ is small.

Option 1: Langevin Monte-Carlo

Sample *n* points from X_{K+1}^h where $X_0^h = 0$ and

$$X_{k+1}^h = -h\nabla V(X_k^h) + \sqrt{2h}Z, Z \sim \mathcal{N}(0, 1)$$

Can achieve any given acuracy with correct h, K, n but slow in practice

Option 2: Variational inference

Find ν in a simple family of measure minimizing $KL(\nu|\mu)$. (Simple optimization problem)

 μ is a measure on \mathbb{R}^d such that

• d >> 1

• $d\mu(x) = \frac{e^{-V(x)}}{Z} dx$ with unknown Z

Objective: provide a function ν close to μ s.t. $W_2(\nu, \mu)$ is small.

Option 1: Langevin Monte-Carlo

Sample *n* points from X_{K+1}^h where $X_0^h = 0$ and

$$X_{k+1}^h = -h\nabla V(X_k^h) + \sqrt{2h}Z, Z \sim \mathcal{N}(0,1)$$

Can achieve any given acuracy with correct $\boldsymbol{h},\boldsymbol{K},\boldsymbol{n}$ but slow in practice

Option 2: Variational inference

Find ν in a simple family of measure minimizing $KL(\nu|\mu)$. (Simple optimization problem)

Fast but limited accuracy

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why is it slow?

All n particles evolve independently.

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?

If $X_0 \sim \nu$, $X_t \sim \nu_t = h_t d\mu$ evolves given the SDE above.

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?

If $X_0 \sim \nu$, $X_t \sim \nu_t = h_t d\mu$ evolves given the SDE above.

 ν_t defines a path between ν and μ .

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?

If $X_0 \sim \nu$, $X_t \sim \nu_t = h_t d\mu$ evolves given the SDE above.

 ν_t defines a path between ν and μ .

At time t, the mass of ν_t at x moves as $-\nabla \log h_t$.

$$\Rightarrow W_2(\nu,\mu) \le \int_0^\infty \left(\int \|\nabla \log h_t\|^2 d\nu_t \right)^{1/2} dt$$

Why does Langevin Monte-Carlo work?

 $\boldsymbol{\mu}$ stationary measure of the diffusion process solution of

 $dX_t = -\nabla V(X_t)dt + \sqrt{2}dB_t.$

Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?

If $X_0 \sim \nu$, $X_t \sim \nu_t = h_t d\mu$ evolves given the SDE above.

 ν_t defines a path between ν and μ .

At time t, the mass of ν_t at x moves as $-\nabla \log h_t$. Fisher information of

w.r.t. μ

$$\Rightarrow W_2(\nu,\mu) \le \int_0^\infty \left(\int \|\nabla \log h_t\|^2 d\nu_t \right)^{1/2} dt^{\nu_t}$$

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Solution: smooth the mass movement using a kernel K.

 \Rightarrow if $d\nu_k^h=fd\mu,$ move the mass at point x by

$$-h\int K(x,y)\nabla \log f(y)d\nu(y) = h\int -\nabla V(y)K(x,y) + \nabla K(x,y)d\nu(x,y) + \nabla K(x,y)d\nu(x,y)d\nu(x,y) + \nabla K(x,y)d\nu(x$$

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Solution: smooth the mass movement using a kernel K.

$$\Rightarrow \text{ if } d\nu_k^h = f d\mu, \text{ move the mass at point } x \text{ by}$$
$$-h \int K(x, y) \nabla \log f(y) d\nu(y) = h \int -\nabla V(y) K(x, y) + \nabla K(x, y) d\nu(y) d\nu(y) = h \int -\nabla V(y) K(x, y) d\nu(y) d\nu(y) d\nu(y) = h \int -\nabla V(y) K(x, y) d\nu(y) d\nu(y) d\nu(y) d\nu(y) = h \int -\nabla V(y) K(x, y) d\nu(y) d\nu(y) d\nu(y) d\nu(y) d\nu(y) = h \int -\nabla V(y) K(x, y) d\nu(y) d$$

Mean displacement of ν_t if $\nu_t = \nu_k^h$

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Solution: smooth the mass movement using a kernel K.

 \Rightarrow if $d\nu_k^h=fd\mu,$ move the mass at point x by

$$-h\int K(x,y)\nabla \log f(y)d\nu(y) = h\int -\nabla V(y)K(x,y) + \nabla K(x,y)d\nu(y) = h\int \nabla V(y)K(x,y) + \nabla K(x,y)d\nu(y) = h\int \nabla V(y) d\nu(y) + \nabla K(x,y)d\nu(y) = h\int \nabla V(y) d\nu(y) + \nabla K(y)d\nu(y) = h\int \nabla V(y) d\nu(y) + \nabla K(y)d\nu(y) = h\int \nabla V(y) d\nu(y) = h\int$$

Integration by parts

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Solution: smooth the mass movement using a kernel K.

 \Rightarrow if $d\nu_k^h=fd\mu,$ move the mass at point x by

$$-h\int K(x,y)\nabla \log f(y)d\nu(y) = h\int -\nabla V(y)K(x,y) + \nabla K(x,y)d\nu(y) + \nabla K(x,y)d\nu(y) = h\int -\nabla V(y)K(x,y) + \nabla K(x,y)d\nu(y) + \nabla K(x,y)d\nu(y$$

Idea: find an approximation $(\nu_k^h)_{k \in \mathbb{N}}$ of $(\nu_t)_{t \ge 0}$ and approximate ν_T for T large enough.

Problem: $(\nu_t)_{t\geq 0}$ tends to "diffuse" so it is hard to approximate through a discrete measure.

Solution: smooth the mass movement using a kernel K.

 \Rightarrow if $d\nu_k^h=fd\mu,$ move the mass at point x by

$$-h\int K(x,y)\nabla\log f(y)d\nu(y) = h\int -\nabla V(y)K(x,y) + \nabla K(x,y)d\nu(y) = h\int -\nabla V(y)K(y)K(x,y) + \nabla K(x,y)d\nu(y) = h\int -\nabla V(y)K(y)K(y) + \nabla K(y)K(y) + \nabla K(y)K(y) + \sum_{n=1}^{\infty} \sum_{$$

Algorithm:

• start with some discrete measure ν_0^h with n particles $X_1^0, \ldots X_n^0$. update the position of the particle X_i^k with

•
$$X_i^{k+1} = X_i^k + \frac{h}{n} \sum_j -\nabla V(X_j^k) K(X_i^k, X_j^k) + \nabla K(X_i^k, X_j^k)$$

Exisiting results:

• for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).
- for t > 0, a discrete-time approximation can be used to approximate ν_t but with a continuous ν_0 .

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).
- for t > 0, a discrete-time approximation can be used to approximate ν_t but with a continuous ν_0 .
- if ν_0 is discrete with N particles, then the previous result is true as $N \to \infty$.

Exisiting results:

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).
- for t > 0, a discrete-time approximation can be used to approximate ν_t but with a continuous ν_0 .
- if ν_0 is discrete with N particles, then the previous result is true as $N \to \infty$.

Desirable results:

Exisiting results:

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).
- for t > 0, a discrete-time approximation can be used to approximate ν_t but with a continuous ν_0 .
- if ν_0 is discrete with N particles, then the previous result is true as $N \to \infty$.

Desirable results:

• Non-asymptotic result w.r.t. N for the measure obtained after convergence of SVGD for a standard metric W_2 .

Exisiting results:

- for ν_0 continuous, SVGD is an approximation of a gradient flow in the space of measures.
- there are guarantees for the speed of convergence of this process.
 (Depends on K).
- for t > 0, a discrete-time approximation can be used to approximate ν_t but with a continuous ν_0 .
- if ν_0 is discrete with N particles, then the previous result is true as $N \to \infty$.

Desirable results:

• Non-asymptotic result w.r.t. N for the measure obtained after convergence of SVGD for a standard metric W_2 .

 \Rightarrow Choice of K.

Thanks for your attention