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Well-suited for multivariate analysis

Can deal with discrete measures

Con: hard to compute

Good for statistical applica-
tions

Need a more practical proxy

Not an integral probability metric
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µ is a measure on Rd such that
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dµ(x) = e−V (x)

Z dx with unknown Z

Objective: provide a function ν close to µ s.t. W2(ν, µ) is small.

Option 1: Langevin Monte-Carlo

Sample n points from Xh
K+1 where Xh

0 = 0 and

Xh
k+1 = −h∇V (Xh

k ) +
√
2hZ,Z ∼ N (0, 1)

Can achieve any given acuracy with correct h,K, n but slow in practice

Option 2: Variational inference

Find ν in a simple family of measure minimizing KL(ν|µ). (Simple
optimization problem)

Fast but limited accuracy
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On Langevin Monte-Carlo

µ stationary measure of the diffusion process solution of

dXt = −∇V (Xt)dt+
√
2dBt.

If X0 ∼ ν, Xt ∼ νt = htdµ evolves given the SDE above.

νt defines a path between ν and µ.

⇒W2(ν, µ) ≤
∫∞
0

(∫
‖∇ log ht‖2dνt

)1/2
dt

Fisher information of
νt w.r.t. µ

Why does Langevin Monte-Carlo work?

Why is it slow?

All n particles evolve independently.

What would it look like if all particles moved together?

At time t, the mass of νt at x moves as −∇ log ht.
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Stein variational gradient descent

Idea: find an approximation (νhk )k∈N of (νt)t≥0 and approximate νT for T
large enough.

Problem: (νt)t≥0 tends to “diffuse” so it is hard to approximate through a
discrete measure.

Solution: smooth the mass movement using a kernel K.

⇒ if dνhk = fdµ, move the mass at point x by

−h
∫
K(x, y)∇ log f(y)dν(y) = h

∫
−∇V (y)K(x, y)+∇K(x, y)dν(y).

Algorithm:

start with some discrete measure νh0 with n particles X0
1 , . . . X

0
n.

update the position of the particle Xk
i with

Xk+1
i = Xk

i +
h

n

∑
j

−∇V (Xk
j )K(Xk

i , X
k
j ) +∇K(Xk

i , X
k
j )
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Guarantees for SVGD

Exisiting results:

for ν0 continuous, SVGD is an approximation of a gradient flow in
the space of measures.

for t > 0, a discrete-time approximation can be used to approximate
νt but with a continuous ν0.

there are guarantees for the speed of convergence of this process.
(Depends on K).

if ν0 is discrete with N particles, then the previous result is true as
N →∞.

Desirable results:

Non-asymptotic result w.r.t. N for the measure obtained after con-
vergence of SV GD for a standard metric W2.

⇒ Choice of K.
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