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Classical Optimal Transport



Classical Optimal Transportation Theory

Let µ, ν ∈ P(Ω), Ω ⊆ Rd , and c a l.s.c. and bounded from below cost function,
the Optimal Transport (OT) problem is defined as follows

E(µ, ν) = inf

{∫
Ω2

c(x , y)dP(x , y) | P ∈ Π(µ,ν)

}
(1)

where Π(µ, ν)denotes the set of couplings P(x , y) ∈ P(Ω2) having µ and ν as
marginals.
• Solution à la Monge the transport plan P is deterministic (or à la Monge) if
P = (Id, S)]µ where S]µ = ν.

• Entropic OT (or Schrödinger) problem:

inf
P∈Π(µ,ν)

∫
Ω2

c(x , y)dP(x , y) + TH(P, µ⊗ ν),

where H(π, ρ) between two probability measures π and
ρ is defined as

H(ρ, π) =


∫

Ω2

(
log
( dρ

dπ

)
− 1
)
dρ, if ρ� π

+∞, otherwise.
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The Multi-Marginal Optimal Transportation

Take N probability measures µi ∈ P(Ω) and c : ΩN → [0,+∞] a l.s.c. cost
function. Then the multi-marginal OT problem reads as:

EN
c (µ1, · · · , µN) = inf

P∈ΠN (µ1,··· ,µN )

∫
ΩN

c(x1, · · · , xN)dP(x1, · · · , xN) (2)

where ΠN(µ1, · · · , µN) denotes the set of couplings P(x1, · · · , xN) having µi as
marginals.
• Solution à la Monge: P = (Id, S2, . . . , SN)]µ1 where Si]µ1 = µi .
• Entropic OT (or Schrödinger) problem: as in the two marginals case.

• Duality: Both 2 and N marginal OT problems admit a useful dual formulation

sup {J(φ1, · · · , φN) | (φ1, · · · , φN) ∈ K} . (3)

where

J(φ1, · · · , φN) :=
N∑
i=1

∫
Ω
φidµi

and K is the set of bounded and continuous functions (φ1, · · · , φN) such that∑N
i=1 φi (xi ) ≤ c(x1, · · · , xN).
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Some applications

• The Wasserstein barycenter problem can be rewritten as a MMOT
problem (see (Agueh and G. Carlier 2011)): statistics, machine learning,
image processing;

• Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)):
economics. The transport plan P matches individuals from each team µi

minimizing a given cost;

• In Density Functional Theory: the electron-electron repulsion (see
(Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and
Klüppelberg 2013)). The plan P(x1, · · · , xN)P(x1, · · · , xN)P(x1, · · · , xN) returns the probability of
finding electrons at position x1, · · · , xNx1, · · · , xNx1, · · · , xN ;

• Incompressible Euler Equations (Brenier 1989) : P(ω) gives “the mass of
fluid” which follows a path ω.

• Mean Field Games (Benamou, G. Carlier, S. Di Marino, and L. Nenna
2018);

• etc...
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The electron-electron repulsion (and repulsive OT)

MMOT arises naturally in Density Functional Theory in order to study the electron-
electron repulsion (ρ represents now the electron density!represents now the electron density!represents now the electron density!)

inf


∫
R3N

∑
i<j

1
|xi − xj |

dP(x1, · · · , xN) | P ∈ ΠN(ρ)

 .

Some other example of repulsive costs :

• Coulomb cost;

• Repulsive harmonic c(x1, · · · , xN) = −
∑

i<j |xi − xj |2;

• The determinant cost c(x1, · · · , xN) = −det(x1, · · · , xN) with xi ∈ RN ;

• c(x1, · · · , xN) = h(
∑N

i=1 xi ) with h strictly convex;

Why is it a difficult problem to treat?
Example: N = 3, d = 1, µi = L[0,1] ∀i and c(x1, x2, x3) = |x1 + x2 + x3|2.

• Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);

• ∃ Si optimal, are not differentiable at any point and they are fractal maps
ibid., Thm 4.6
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Fractal solution for the repulsive harmonic cost

Assume that ρ has finite second moment, then ∀P ∈ ΠN(ρ)

P(cRH) :=

∫
−
∑
i<j

|xi − xj |2dP =

∫
|
∑
i

xi |2dP− N
∑
i

∫
x2
i dP

= P(h)− N2
∫

x2dρ︸ ︷︷ ︸
const.

.

Proposition: Take c(x1, · · · , xN) = h(
∑N

i=1 xi ) then P ∈ ΠN(ρ) is optimal ⇔
supp(P) ⊂ {

∑
xi = k} where k = N

∫
xdρ.

Consequences for the repulsive harmonic: Uniqueness may fail and fractal
solutions exists.
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Grand Canonical Optimal Transport



Subsystems are Grand Canonical

Let consider a symmetric probability measure P over ΩN (with N very large)
describing the distribution of bicycles in Paris. We want to know what happens
just in the subset A = 14th arrondissement.

for any Bn ⊂ An we have
P0 = P((Ω \ A)N) n = 0,

Pn(Bn) =
(
N
n

)
P(Bn × (Ω \ A)N−n) 1 ≤ n ≤ N − 1,

PN(BN) = P(BN) n = N,

0 n ≥ N + 1.

• The collection Pn(An) is a probability P0 +
∑N

n=1 Pn(An) = 1.

• The average number of bicycles in A is
∑N

n=1 nPn(An) ∈ [0,N].

• The density in A is ρP(B) = P1(B) +
∑N

n=2 Pn(B × An−1).
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Grand Canonical Optimal Transport

Let now N̄ ∈ R+ (not an integer anymore!!!) be the average number of
particles in the system and ρ the average distribution...how can we generalize
Optimal Transport to this case?

Definition (Grand canonical probability measure)
We say that P = (Pn)n≥0 is a Grand Canonical probability measure if
Pn ∈M

sym
+ (Ωn) ∀n ≥ 1, P0 ∈ R+ and∑

n≥0

Pn(Ωn) = 1.

Then, the marginal density is given by

ρP(B) = P1(B) +
∑
n>1

n Pn(B × Ωn−1)︸ ︷︷ ︸
=ρPn

, ∀B ⊂ Ω
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Grand Canonical Optimal Transport

The (grand canonical) Optimal Transport problem now reads

EGC (ρ) = inf

{∑
n>1

∫
Ωn

cn(x1, · · · , xn)dPn | P ∈ ΠGC (ρ)

}
, (4)

where ΠGC (ρ) denotes the set of Grand Canonical probability measures having
ρ as average marginal.

Definition (Super-stability)
We say that the family of costs (cn)n≥0 is super-stable if cn ≥ −A− Bn for
some constants A,B ≥ 0 and if for any compact set K ⊂ Rd , there exists
εK > 0 and nK ∈ N such that

cn(x1, ..., xn) ≥ − n

εK
+ εK

(
n∑

j=1

1Ω∩K (xj)

)2

on Ωn for all n ≥ nK .

Theorem (existence and l.s.c.)
Let (cn)n≥0 a family of costs super stable and l.s.c then (4) admits a minimiser
P?. Moreover, ρ 7→ EGC (ρ) is l.s.c. for the tight convergence of measures.
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Some remarks

• When N̄ ∈ N then EGC (ρ) ≤ EN̄(ρ);

• Classical super stable costs are Coulomb potential, Riesz potential on Rd ,
etc. Moreover a pair-wise grand-canonical cost takes the form

c0 = c1 = 0, cn =
n∑

i<j

w(xi , xj) for n ≥ 3.

• A truncated version has been proposed by (De Pascale, Bouchitté,
Buttazzo, and Champion 2021) : a maximum number of marginals N is
fixed. Denote by E

6N
GC the truncated G, then for a family of super-stable

costs we have that E6N
GC → EGC as N→∞ (in the sense of

Γ−convergence);

• Given ρ(Ω) = n ∈ N, the n-marginal problem can be written in the form

E
n(ρ) = inf

(0,...,0,Pn,0,...)∈ΠGC (ρ)

∫
Ωn

cn dPn
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Relation with multi-marginal optimal transport

It follows from existence,

Corollary (Convex hull)
Let ρ be a positive measure with ρ(Ω) <∞ such that EGC (ρ) <∞. Then,
under the same assumptions as in the existence theorem we have

EGC (ρ) = min
ρ=

∑
n≥1 αnρn

ρn(Ω)=n∑
n≥0 αn=1

∑
n≥0

αn E
n(ρn).

Moreover, in the case of coulomb potential the following result holds

Theorem (Weak lower semi-continuous envelope)

Take Ω = Rd . Let ρ be any finite measure so that EGC (ρ) <∞. Then there
exists a sequence ρk such that Nk := ρk(Rd) ∈ N,

ρk ⇀ ρ locally and lim
k→∞

E
Nk
(
ρk
)

= EGC (ρ).
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Compact support for Coulomb potentials

Compact support: We say that a Grand Canonical measure P has compact
support in [[Nmin,Nmax ]], with Nmin ≤ 〈N〉 ≤ Nmax , that is

Pn(Ωn) = 0 if n /∈ [[Nmin,Nmax ]]

Theorem (Compact support for the Coulomb potential in d = 1)

Let w(xi , xj) = 1
|xi−xj |

and k < N̄ < k + 1, with k ∈ N, then the optimal
solution P? has a compact support in [[k, k + 1]].

Theorem (Compact support for the Coulomb potential in d ≥ 2)

Let w(xi , xj) = 1
|xi−xj |

then the optimal solution P? has a compact support in

[[Nmin,Nmax ]] where Nmin = bN̄c+
3
2
− 1

2

√
9 + 8bN̄c and

Nmax = dN̄e+
1
2

√
8dN̄e − 7− 1

2

Remarks:

• The length of the support depends on 〈N〉!
• If N̄ = 2, then the Grand Canonical is always Canonical.
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Let w(xi , xj) = 1
|xi−xj |

then the optimal solution P? has a compact support in

[[Nmin,Nmax ]] where Nmin = bN̄c+
3
2
− 1

2

√
9 + 8bN̄c and

Nmax = dN̄e+
1
2

√
8dN̄e − 7− 1

2

Remarks:

• The length of the support depends on 〈N〉!
• If N̄ = 2, then the Grand Canonical is always Canonical.
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Gran canonical state with Coulomb in d = 2 and length of the support

Let Ω = [0, 1]2 and the
average marginal given by

ρ =
1
2
∑6

i=1 δxi .

Length of the support: take
Ω = Rd and the point x1, · · · , x6

front the left . Then we can
inductively construct a sequence
(y

(k)
j )6k

j=1 such that

ρ(k) =
1
2

6k∑
j=1

δ
y

(k)
j

, ρ(k)(Rd) =
6k

2
,

the grand-canonical problem
admits a unique minimiser P(k)

which satisfies

supp(P(k)) =

{
6k − 2k

2
,
6k + 2k

2

}
.

The length of the support is of
order ρ(Rd)α where α ∼ 0.38
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Deriving the dual

Proceeding as usual we get the following dual problem

sup

{∫
Ω

φ(x)dρ(x) + β | (φ, β) ∈ D

}
, (5)

where

D := {φ ∈ Cb | β ≤ c0, β +
n∑

i=1

φ(xi ) ≤ cn(x1, · · · , xn), ∀n ≥ 1}.

Remark 1: β is the Lagrange multiplier associated to the constraint that the
Grand Canonical P is a probability P0 +

∑
n≥1 Pn(Ωn) = 1;

Remark 2: Assuming that cn is a family of super stable l.s.c. costs then strong
duality holds;
Remark 3: Existence is delicate to treat: via a relaxed problem, namely
φ ∈ L∞.
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Repulsive harmonic Grand Canonical

Let’s compute the energy for P ∈ ΠGC (ρ)

P(cRH) :=
∑
n>1

∫
Ωn

−
n∑

i<j

|xi−xj |2dPn =
∑
n>1

∫
Ωn

h(
n∑

i=1

xi )dPn−
∑
n>1

n2
∫

Ω

x2dρPn .

Moreover, the worst is coming...

Proposition

Let cn(x1, · · · , xn) = −
∑

i<j w(xi , xj) such that
∫

Ω2 w(x , y)dρ(x)dρ(y) > 0,
then

inf(GC) = −∞.

Sketch of proof: Choose P s.t.

• PK = ZK

(
ρ⊗

K

N̄K

)
with

ZK = K !KK−1

N̄K−1 ;

• P0 = 1− N̄
K
;

• Pn(Ωn) = 0 ∀n 6= 0,K .

Then,

P(c) = −K − 1
2〈N〉

∫
Ω2

w(x , y)dρ(x)dρ(y)︸ ︷︷ ︸
>0

Remark: take w(x , y) = |x − y |2!
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The Entropic Grand Canonical OT

Let us consider the Poisson GC state Gρ given by

Gρ,0 = e−ρ(Ω), Gρ,n = e−ρ(Ω) ρ
⊗n

n!
,

then the entropic Grand-Canonical problem at T > 0 reads

FT (ρ) := inf
P∈ΠGC (ρ)

{P(c) + TH(P,Gρ)},

where P(c) :=
∑

n>1

∫
Ωn cn(x1, · · · , xn)dPn

Some results:

• FT (ρ) admits a unique minimizer P(T ) for all T > 0.

• we have limT→0+ FT (ρ) = inf P∈ΠGC (ρ)
H(P,Gρ)<∞

P(c)

• Assume that Gρ(c) <∞ then limT→∞ FT (ρ) = Gρ(c)
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Thank You!!



Gibbs state and duality

Given the partition function for a measurable potential φ

ZT ,ρ(φ) := e−
c0
T
−ρ(Ω) +

∑
n≥1

e−ρ(Ω)

n!

∫
Ωn

exp

(
−cn +

∑n
j=1 φ(xj)

T

)
dρ⊗n.

Then one can prove strong duality,

FT (ρ) = sup∫
e−φ/T<∞

{∫
φdρ− T logZT (φ)

}
,

and existence of an optimal potential such that unique minimiser of FT (ρ) is
given by the Gibbs state Pφ

Pφ,0 =
e−

c0
T
−ρ(Ω)

ZT ,ρ(φ)
, Pφ,n =

e
−cn+

∑n
j=1 φ(xj )

T
−ρ(Ω)ρ⊗n

ZT ,ρ(φ)n!
.
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Numerical test, Coulomb d = 1 with entropic regularization

d = 1, 〈N〉 = 2.5, ρ(x) = 〈N〉χ[0,1](x) and the Coulomb potential.

densities of Pn P2 P3

17


	Classical Optimal Transport
	Classical Optimal Transportation Theory
	Multi-Marginal Optimal Transport
	The electron-electron repulsion

	Grand Canonical Optimal Transport
	Subsystems are Grand Canonical
	Existence
	Compact support and duality
	Differences with the classical case
	Grand Canonical OT at positive temperature


