

Luca Nenna

joint work with S. Di Marino and M. Lewin New Monge problems seminar, UGE, 06/02/2023

(LMO) Université Paris-Saclay

Overview

 Classical Optimal Transport Classical Optimal Transportation Theory Multi-Marginal Optimal Transport The electron-electron repulsion

 Grand Canonical Optimal Transport Subsystems are Grand Canonical Existence

Compact support and duality

Differences with the classical case

Grand Canonical OT at positive temperature

Classical Optimal Transport

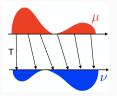
Classical Optimal Transportation Theory

Let $\mu, \nu \in \mathcal{P}(\Omega)$, $\Omega \subseteq \mathbb{R}^d$, and *c* a l.s.c. and bounded from below cost function, the Optimal Transport (OT) problem is defined as follows

$$\mathcal{E}(\mu,\nu) = \inf\left\{\int_{\Omega^2} c(x,y) d\mathbb{P}(x,y) \mid \mathbb{P} \in \Pi(\mu,\nu)\right\}$$
(1)

where $\Pi(\mu, \nu)$ denotes the set of couplings $\mathbb{P}(x, y) \in \mathcal{P}(\Omega^2)$ having μ and ν as marginals.

• Solution à la Monge the transport plan \mathbb{P} is deterministic (or à la Monge) if $\mathbb{P} = (\mathrm{Id}, S)_{\sharp} \mu$ where $S_{\sharp} \mu = \nu$.



Classical Optimal Transportation Theory

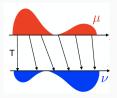
Let $\mu, \nu \in \mathcal{P}(\Omega)$, $\Omega \subseteq \mathbb{R}^d$, and *c* a l.s.c. and bounded from below cost function, the Optimal Transport (OT) problem is defined as follows

$$\mathcal{E}(\mu,\nu) = \inf\left\{\int_{\Omega^2} c(x,y) d\mathbb{P}(x,y) \mid \mathbb{P} \in \Pi(\mu,\nu)\right\}$$
(1)

where $\Pi(\mu, \nu)$ denotes the set of couplings $\mathbb{P}(x, y) \in \mathcal{P}(\Omega^2)$ having μ and ν as marginals.

• Solution à la Monge the transport plan \mathbb{P} is deterministic (or à la Monge) if $\mathbb{P} = (\mathrm{Id}, S)_{\sharp} \mu$ where $S_{\sharp} \mu = \nu$.

• Entropic OT (or Schrödinger) problem:



$$\inf_{\mathbb{P}\in \Pi(\mu,
u)}\int_{\Omega^{\mathbf{2}}}c(x,y)\mathrm{d}\mathbb{P}(x,y)+\,T\mathfrak{H}(\mathbb{P},\mu\otimes
u),$$

where $\mathcal{H}(\pi, \rho)$ between two probability measures π and ρ is defined as

$$\mathcal{H}(\rho,\pi) = \begin{cases} \int_{\Omega^2} \Big(\log \Big(\frac{\mathrm{d}\rho}{\mathrm{d}\pi} \Big) - 1 \Big) \mathrm{d}\rho, & \text{ if } \rho \ll \pi \\ +\infty, & \text{ otherwise.} \end{cases}$$

The Multi-Marginal Optimal Transportation

Take N probability measures $\mu_i \in \mathcal{P}(\Omega)$ and $c : \Omega^N \to [0, +\infty]$ a l.s.c. cost function. Then the multi-marginal OT problem reads as:

$$\mathcal{E}_{c}^{N}(\mu_{1},\cdots,\mu_{N})=\inf_{\mathbb{P}\in\Pi_{N}(\mu_{1},\cdots,\mu_{N})}\int_{\Omega^{N}}c(x_{1},\cdots,x_{N})\mathrm{d}\mathbb{P}(x_{1},\cdots,x_{N}) \quad (2)$$

where $\Pi_N(\mu_1, \dots, \mu_N)$ denotes the set of couplings $\mathbb{P}(x_1, \dots, x_N)$ having μ_i as marginals.

- Solution à la Monge: $\mathbb{P} = (\mathrm{Id}, S_2, \ldots, S_N)_{\sharp} \mu_1$ where $S_{i\sharp} \mu_1 = \mu_i$.
- Entropic OT (or Schrödinger) problem: as in the two marginals case.

The Multi-Marginal Optimal Transportation

Take N probability measures $\mu_i \in \mathcal{P}(\Omega)$ and $c : \Omega^N \to [0, +\infty]$ a l.s.c. cost function. Then the multi-marginal OT problem reads as:

$$\mathcal{E}_{c}^{N}(\mu_{1},\cdots,\mu_{N})=\inf_{\mathbb{P}\in\Pi_{N}(\mu_{1},\cdots,\mu_{N})}\int_{\Omega^{N}}c(x_{1},\cdots,x_{N})\mathrm{d}\mathbb{P}(x_{1},\cdots,x_{N}) \quad (2)$$

where $\Pi_N(\mu_1, \dots, \mu_N)$ denotes the set of couplings $\mathbb{P}(x_1, \dots, x_N)$ having μ_i as marginals.

- Solution à la Monge: $\mathbb{P} = (\mathrm{Id}, S_2, \ldots, S_N)_{\sharp} \mu_1$ where $S_{i\sharp} \mu_1 = \mu_i$.
- Entropic OT (or Schrödinger) problem: as in the two marginals case.
- Duality: Both 2 and N marginal OT problems admit a useful dual formulation

$$\sup \left\{ \mathcal{J}(\phi_1, \cdots, \phi_N) \mid (\phi_1, \cdots, \phi_N) \in \mathcal{K} \right\}.$$
(3)

where

$$\mathfrak{J}(\phi_1,\cdots,\phi_N):=\sum_{i=1}^N\int_\Omega\phi_i\mathrm{d}\mu_i$$

and \mathcal{K} is the set of bounded and continuous functions (ϕ_1, \cdots, ϕ_N) such that $\sum_{i=1}^N \phi_i(x_i) \leq c(x_1, \cdots, x_N)$.

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan P matches individuals from each team μ_i minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan P(x₁, ..., x_N) returns the probability of finding electrons at position x₁, ..., x_N;
- Incompressible Euler Equations (Brenier 1989) : $\mathbb{P}(\omega)$ gives "the mass of fluid" which follows a path ω .
- Mean Field Games (Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- etc...

- The Wasserstein barycenter problem can be rewritten as a MMOT problem (see (Agueh and G. Carlier 2011)): statistics, machine learning, image processing;
- Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)): economics. The transport plan ℙ matches individuals from each team μ_i minimizing a given cost;
- In Density Functional Theory: the electron-electron repulsion (see (Buttazzo, De Pascale, and Gori-Giorgi 2012; Cotar, Friesecke, and Klüppelberg 2013)). The plan P(x₁, ..., x_N) returns the probability of finding electrons at position x₁, ..., x_N;
- Incompressible Euler Equations (Brenier 1989) : $\mathbb{P}(\omega)$ gives "the mass of fluid" which follows a path ω .
- Mean Field Games (Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- etc...

The electron-electron repulsion (and repulsive OT)

MMOT arises naturally in Density Functional Theory in order to study the electronelectron repulsion (ρ represents now the electron density!)

$$\inf\left\{\int_{\mathbb{R}^{3N}}\sum_{i< j}\frac{1}{|x_i-x_j|}\mathrm{d}\mathbb{P}(x_1,\cdots,x_N)\mid \mathbb{P}\in \Pi_N(\rho)\right\}.$$

Some other example of repulsive costs :

- Coulomb cost;
- Repulsive harmonic $c(x_1, \cdots, x_N) = -\sum_{i < j} |x_i x_j|^2$;
- The determinant cost $c(x_1, \dots, x_N) = -\det(x_1, \dots, x_N)$ with $x_i \in \mathbb{R}^N$;
- $c(x_1, \dots, x_N) = h(\sum_{i=1}^N x_i)$ with h strictly convex;

The electron-electron repulsion (and repulsive OT)

MMOT arises naturally in Density Functional Theory in order to study the electronelectron repulsion (ρ represents now the electron density!)

$$\inf\left\{\int_{\mathbb{R}^{3N}}\sum_{i< j}\frac{1}{|x_i-x_j|}\mathrm{d}\mathbb{P}(x_1,\cdots,x_N)\mid \mathbb{P}\in \Pi_N(\rho)\right\}.$$

Some other example of repulsive costs :

- Coulomb cost;
- Repulsive harmonic $c(x_1, \cdots, x_N) = -\sum_{i < j} |x_i x_j|^2$;
- The determinant cost $c(x_1, \cdots, x_N) = -\det(x_1, \cdots, x_N)$ with $x_i \in \mathbb{R}^N$;
- $c(x_1, \dots, x_N) = h(\sum_{i=1}^N x_i)$ with h strictly convex;

Why is it a difficult problem to treat?

Example: N = 3, d = 1, $\mu_i = \mathcal{L}_{[0,1]} \ \forall i \text{ and } c(x_1, x_2, x_3) = |x_1 + x_2 + x_3|^2$.

- Uniqueness fails (Simone Di Marino, Gerolin, and Luca Nenna 2017);
- ∃ S_i optimal, are not differentiable at any point and they are fractal maps ibid., Thm 4.6

Assume that ρ has finite second moment, then $\forall \mathbb{P} \in \Pi_N(\rho)$

$$\mathbb{P}(c_{\mathcal{R}\mathcal{H}}) := \int -\sum_{i < j} |x_i - x_j|^2 d\mathbb{P} = \int |\sum_i x_i|^2 d\mathbb{P} - N \sum_i \int x_i^2 d\mathbb{P}$$
$$= \mathbb{P}(h) - \underbrace{N^2 \int x^2 d\rho}_{const.}$$

Proposition: Take $c(x_1, \dots, x_N) = h(\sum_{i=1}^N x_i)$ then $\mathbb{P} \in \Pi_N(\rho)$ is optimal \Leftrightarrow supp $(\mathbb{P}) \subset \{\sum x_i = k\}$ where $k = N \int x d\rho$.

Consequences for the repulsive harmonic: Uniqueness may fail and fractal solutions exists.

for any
$$B_n \subset A^n$$
 we have

$$\begin{cases}
\mathbb{P}_0 = \mathcal{P}((\Omega \setminus A)^N) & n = 0, \\
\mathbb{P}_n(B_n) = \binom{N}{n} \mathcal{P}(B_n \times (\Omega \setminus A)^{N-n}) & 1 \le n \le N-1, \\
\mathbb{P}_N(B_N) = \mathcal{P}(B_N) & n = N, \\
0 & n \ge N+1.
\end{cases}$$

or any
$$B_n \subset A^n$$
 we have

$$\begin{cases}
\mathbb{P}_0 = \mathcal{P}((\Omega \setminus A)^N) & n = 0, \\
\mathbb{P}_n(B_n) = \binom{N}{n} \mathcal{P}(B_n \times (\Omega \setminus A)^{N-n}) & 1 \le n \le N-1, \\
\mathbb{P}_N(B_N) = \mathcal{P}(B_N) & n = N, \\
0 & n \ge N+1.
\end{cases}$$

• The collection $\mathbb{P}_n(A^n)$ is a probability $\mathbb{P}_0 + \sum_{n=1}^N \mathbb{P}_n(A^n) = 1$.

or any
$$B_n \subset A^n$$
 we have

$$\begin{cases}
\mathbb{P}_0 = \mathcal{P}((\Omega \setminus A)^N) & n = 0, \\
\mathbb{P}_n(B_n) = \binom{N}{n} \mathcal{P}(B_n \times (\Omega \setminus A)^{N-n}) & 1 \le n \le N-1, \\
\mathbb{P}_N(B_N) = \mathcal{P}(B_N) & n = N, \\
0 & n \ge N+1.
\end{cases}$$

- The collection $\mathbb{P}_n(A^n)$ is a probability $\mathbb{P}_0 + \sum_{n=1}^N \mathbb{P}_n(A^n) = 1$.
- The average number of bicycles in A is $\sum_{n=1}^{N} n\mathbb{P}_n(A^n) \in [0, N]$.

for any
$$B_n \subset A^n$$
 we have

$$\begin{cases}
\mathbb{P}_0 = \mathcal{P}((\Omega \setminus A)^N) & n = 0, \\
\mathbb{P}_n(B_n) = \binom{N}{n} \mathcal{P}(B_n \times (\Omega \setminus A)^{N-n}) & 1 \le n \le N-1, \\
\mathbb{P}_N(B_N) = \mathcal{P}(B_N) & n = N, \\
0 & n \ge N+1.
\end{cases}$$

- The collection $\mathbb{P}_n(A^n)$ is a probability $\mathbb{P}_0 + \sum_{n=1}^N \mathbb{P}_n(A^n) = 1$.
- The average number of bicycles in A is $\sum_{n=1}^{N} n \mathbb{P}_n(A^n) \in [0, N]$.
- The density in A is $\rho_{\mathbb{P}}(B) = \mathbb{P}_1(B) + \sum_{n=2}^{N} \mathbb{P}_n(B \times A^{n-1}).$

Let now $\bar{N} \in \mathbb{R}_+$ (not an integer anymore!!!) be the average number of particles in the system and ρ the average distribution...how can we generalize Optimal Transport to this case?

Let now $\overline{N} \in \mathbb{R}_+$ (not an integer anymore!!!) be the average number of particles in the system and ρ the average distribution...how can we generalize Optimal Transport to this case?

Definition (Grand canonical probability measure)

We say that $\mathbb{P} = (\mathbb{P}_n)_{n \geq 0}$ is a Grand Canonical probability measure if $\mathbb{P}_n \in \mathcal{M}^{sym}_+(\Omega^n) \ \forall n \geq 1, \ \mathbb{P}_0 \in \mathbb{R}_+$ and

$$\sum_{n\geq 0}\mathbb{P}_n(\Omega^n)=1.$$

Then, the marginal density is given by

$$\rho_{\mathbb{P}}(B) = \mathbb{P}_1(B) + \sum_{n>1} n \underbrace{\mathbb{P}_n(B \times \Omega^{n-1})}_{=\rho_{\mathbb{P}_n}}, \ \forall B \subset \Omega$$

The (grand canonical) Optimal Transport problem now reads

$$\mathcal{E}_{GC}(\rho) = \inf\left\{\sum_{n>1} \int_{\Omega^n} c_n(x_1, \cdots, x_n) \mathrm{d}\mathbb{P}_n \mid \mathbb{P} \in \Pi_{GC}(\rho)\right\},\tag{4}$$

where $\Pi_{GC}(\rho)$ denotes the set of Grand Canonical probability measures having ρ as average marginal.

The (grand canonical) Optimal Transport problem now reads

$$\mathcal{E}_{GC}(\rho) = \inf\left\{\sum_{n>1} \int_{\Omega^n} c_n(x_1, \cdots, x_n) \mathrm{d}\mathbb{P}_n \mid \mathbb{P} \in \Pi_{GC}(\rho)\right\},\tag{4}$$

where $\Pi_{GC}(\rho)$ denotes the set of Grand Canonical probability measures having ρ as average marginal.

Definition (Super-stability)

We say that the family of costs $(c_n)_{n\geq 0}$ is *super-stable* if $c_n \geq -A - Bn$ for some constants $A, B \geq 0$ and if for any compact set $K \subset \mathbb{R}^d$, there exists $\varepsilon_K > 0$ and $n_K \in \mathbb{N}$ such that

$$c_n(x_1,...,x_n) \ge -rac{n}{arepsilon_K} + arepsilon_K\left(\sum_{j=1}^n \mathbbm{1}_{\Omega\cap K}(x_j)
ight)^2$$
 on Ω^n for all $n\ge n_K$.

The (grand canonical) Optimal Transport problem now reads

$$\mathcal{E}_{GC}(\rho) = \inf\left\{\sum_{n>1} \int_{\Omega^n} c_n(x_1, \cdots, x_n) \mathrm{d}\mathbb{P}_n \mid \mathbb{P} \in \Pi_{GC}(\rho)\right\},\tag{4}$$

where $\Pi_{GC}(\rho)$ denotes the set of Grand Canonical probability measures having ρ as average marginal.

Definition (Super-stability)

We say that the family of costs $(c_n)_{n\geq 0}$ is *super-stable* if $c_n \geq -A - Bn$ for some constants $A, B \geq 0$ and if for any compact set $K \subset \mathbb{R}^d$, there exists $\varepsilon_K > 0$ and $n_K \in \mathbb{N}$ such that

$$c_n(x_1,...,x_n) \geq -rac{n}{arepsilon_K} + arepsilon_K\left(\sum_{j=1}^n \mathbbm{1}_{\Omega\cap K}(x_j)
ight)^2 \quad ext{on } \Omega^n ext{ for all } n\geq n_K.$$

Theorem (existence and l.s.c.)

Let $(c_n)_{n\geq 0}$ a family of costs super stable and l.s.c then (4) admits a minimiser \mathbb{P}^* . Moreover, $\rho \mapsto \mathcal{E}_{GC}(\rho)$ is l.s.c. for the tight convergence of measures.

• When $\bar{N} \in \mathbb{N}$ then $\mathcal{E}_{GC}(\rho) \leq \mathcal{E}^{\bar{N}}(\rho)$;

- When $\overline{N} \in \mathbb{N}$ then $\mathcal{E}_{GC}(\rho) \leq \mathcal{E}^{\overline{N}}(\rho)$;
- Classical super stable costs are Coulomb potential, Riesz potential on \mathbb{R}^d , etc. Moreover a pair-wise grand-canonical cost takes the form

$$c_0 = c_1 = 0, \ c_n = \sum_{i < j}^n w(x_i, x_j) \text{ for } n \ge 3.$$

- When $\overline{N} \in \mathbb{N}$ then $\mathcal{E}_{GC}(\rho) \leq \mathcal{E}^{\overline{N}}(\rho)$;
- Classical super stable costs are Coulomb potential, Riesz potential on \mathbb{R}^d , etc. Moreover a pair-wise grand-canonical cost takes the form

$$c_0 = c_1 = 0, \ c_n = \sum_{i < j}^n w(x_i, x_j) \text{ for } n \ge 3.$$

• A truncated version has been proposed by (De Pascale, Bouchitté, Buttazzo, and Champion 2021) : a maximum number of marginals \mathcal{N} is fixed. Denote by $\mathcal{E}_{GC}^{\leq \mathcal{N}}$ the truncated G, then for a family of super-stable costs we have that $\mathcal{E}_{GC}^{\leq \mathcal{N}} \to \mathcal{E}_{GC}$ as $\mathcal{N} \to \infty$ (in the sense of Γ -convergence);

- When $\overline{N} \in \mathbb{N}$ then $\mathcal{E}_{GC}(\rho) \leq \mathcal{E}^{\overline{N}}(\rho)$;
- Classical super stable costs are Coulomb potential, Riesz potential on \mathbb{R}^d , etc. Moreover a pair-wise grand-canonical cost takes the form

$$c_0 = c_1 = 0, \ c_n = \sum_{i < j}^n w(x_i, x_j) \text{ for } n \ge 3.$$

• A truncated version has been proposed by (De Pascale, Bouchitté, Buttazzo, and Champion 2021) : a maximum number of marginals \mathcal{N} is fixed. Denote by $\mathcal{E}_{GC}^{\leq \mathcal{N}}$ the truncated G, then for a family of super-stable costs we have that $\mathcal{E}_{GC}^{\leq \mathcal{N}} \to \mathcal{E}_{GC}$ as $\mathcal{N} \to \infty$ (in the sense of Γ -convergence);

• Given $\rho(\Omega) = n \in \mathbb{N}$, the *n*-marginal problem can be written in the form

$$\mathcal{E}^{n}(\rho) = \inf_{(0,\ldots,0,\mathbb{P}_{n},0,\ldots)\in\Pi_{GC}(\rho)} \int_{\Omega^{n}} c_{n} \, \mathrm{d}\mathbb{P}_{n}$$

Relation with multi-marginal optimal transport

It follows from existence,

Corollary (Convex hull)

Let ρ be a positive measure with $\rho(\Omega) < \infty$ such that $\mathcal{E}_{GC}(\rho) < \infty$. Then, under the same assumptions as in the existence theorem we have

$$\mathcal{E}_{GC}(\rho) = \min_{\substack{\rho = \sum_{n \ge 1} \alpha_n \rho_n \\ \rho_n(\overline{\Omega}) = n \\ \sum_{n \ge 0} \alpha_n = 1}} \sum_{n \ge 0} \alpha_n \mathcal{E}^n(\rho_n).$$

Relation with multi-marginal optimal transport

It follows from existence,

Corollary (Convex hull)

Let ρ be a positive measure with $\rho(\Omega) < \infty$ such that $\mathcal{E}_{GC}(\rho) < \infty$. Then, under the same assumptions as in the existence theorem we have

$$\mathcal{E}_{GC}(\rho) = \min_{\substack{\rho = \sum_{n \ge 1} \alpha_n \rho_n \\ \rho_n(\overline{\Omega}) = n \\ \sum_{n \ge 0} \alpha_n = 1}} \sum_{n \ge 0} \alpha_n \mathcal{E}^n(\rho_n).$$

Moreover, in the case of coulomb potential the following result holds

Theorem (Weak lower semi-continuous envelope)

Take $\Omega = \mathbb{R}^d$. Let ρ be any finite measure so that $\mathcal{E}_{GC}(\rho) < \infty$. Then there exists a sequence ρ^k such that $N_k := \rho^k(\mathbb{R}^d) \in \mathbb{N}$,

$$\rho^k \rightharpoonup \rho$$
 locally and $\lim_{k \to \infty} \mathcal{E}^{N_k}(\rho^k) = \mathcal{E}_{GC}(\rho).$

Compact support for Coulomb potentials

Compact support: We say that a Grand Canonical measure \mathbb{P} has **compact support in** $[\![N_{min}, N_{max}]\!]$, with $N_{min} \leq \langle N \rangle \leq N_{max}$, that is

 $\mathbb{P}_n(\Omega^n) = 0 \quad \text{if } n \notin \llbracket N_{\min}, N_{\max} \rrbracket$

Compact support for Coulomb potentials

Compact support: We say that a Grand Canonical measure \mathbb{P} has **compact support in** $[\![N_{min}, N_{max}]\!]$, with $N_{min} \leq \langle N \rangle \leq N_{max}$, that is

 $\mathbb{P}_n(\Omega^n) = 0 \quad \text{if } n \notin \llbracket N_{\min}, N_{\max} \rrbracket$

Theorem (Compact support for the Coulomb potential in d = 1)

Let $w(x_i, x_j) = \frac{1}{|x_i - x_j|}$ and $k < \overline{N} < k + 1$, with $k \in \mathbb{N}$, then the optimal solution \mathbb{P}^* has a compact support in $[\![k, k + 1]\!]$.

Compact support for Coulomb potentials

Compact support: We say that a Grand Canonical measure \mathbb{P} has **compact support in** $[\![N_{min}, N_{max}]\!]$, with $N_{min} \leq \langle N \rangle \leq N_{max}$, that is

 $\mathbb{P}_n(\Omega^n) = 0 \quad \text{if } n \notin \llbracket N_{\min}, N_{\max} \rrbracket$

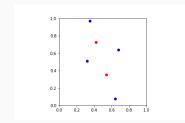
Theorem (Compact support for the Coulomb potential in d = 1) Let $w(x_i, x_j) = \frac{1}{|x_i - x_j|}$ and $k < \overline{N} < k + 1$, with $k \in \mathbb{N}$, then the optimal solution \mathbb{P}^* has a compact support in $[\![k, k + 1]\!]$.

Theorem (Compact support for the Coulomb potential in $d \ge 2$) Let $w(x_i, x_j) = \frac{1}{|x_i - x_j|}$ then the optimal solution \mathbb{P}^* has a compact support in $\llbracket N_{min}, N_{max} \rrbracket$ where $N_{min} = \lfloor \bar{N} \rfloor + \frac{3}{2} - \frac{1}{2}\sqrt{9 + 8\lfloor \bar{N} \rfloor}$ and $N_{max} = \lceil \bar{N} \rceil + \frac{1}{2}\sqrt{8\lceil \bar{N} \rceil - 7} - \frac{1}{2}$

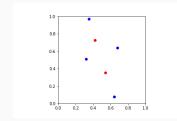
Remarks:

- The length of the support depends on $\langle N \rangle$!
- If $\bar{N} = 2$, then the Grand Canonical is always Canonical.

Let $\Omega = [0, 1]^2$ and the average marginal given by $\rho = \frac{1}{2} \sum_{i=1}^{6} \delta_{x_i}.$



Let $\Omega = [0, 1]^2$ and the average marginal given by $\rho = \frac{1}{2} \sum_{i=1}^{6} \delta_{x_i}.$



Length of the support: take $\Omega = \mathbb{R}^d$ and the point x_1, \dots, x_6 front the left . Then we can inductively construct a sequence $(y_j^{(k)})_{j=1}^{6^k}$ such that

$$ho^{(k)} = rac{1}{2} \sum_{j=1}^{6^k} \delta_{y^{(k)}_j}, \quad
ho^{(k)}(\mathbb{R}^d) = rac{6^k}{2},$$

the grand-canonical problem admits a unique minimiser $\mathbb{P}^{(k)}$ which satisfies

$$supp(\mathbb{P}^{(k)}) = \left\{ \frac{6^k - 2^k}{2}, \frac{6^k + 2^k}{2} \right\}.$$

The length of the support is of order $\rho(\mathbb{R}^d)^{\alpha}$ where $\alpha \sim 0.38$

Proceeding as usual we get the following dual problem

$$\sup\left\{\int_{\Omega}\phi(x)d\rho(x)+\beta\mid (\phi,\beta)\in\mathcal{D}\right\},$$
(5)

where

$$\mathcal{D}:=\{\phi\in \mathfrak{C}_b\mid eta\leq c_0,\ eta+\sum_{i=1}^n\phi(x_i)\leq c_n(x_1,\cdots,x_n),\ orall n\geq 1\}.$$

Remark 1: β is the Lagrange multiplier associated to the constraint that the Grand Canonical \mathbb{P} is a probability $\mathbb{P}_0 + \sum_{n \ge 1} \mathbb{P}_n(\Omega^n) = 1$; **Remark 2:** Assuming that c_n is a family of super stable l.s.c. costs then strong duality holds;

Remark 3: Existence is delicate to treat: via a relaxed problem, namely $\phi \in L^{\infty}$.

Let's compute the energy for $\mathbb{P}\in \Pi_{GC}(
ho)$

$$\mathbb{P}(c_{RH}) := \sum_{n>1} \int_{\Omega^n} -\sum_{i< j}^n |x_i - x_j|^2 \mathrm{d}\mathbb{P}_n = \sum_{n>1} \int_{\Omega^n} h(\sum_{i=1}^n x_i) \mathrm{d}\mathbb{P}_n - \sum_{n>1} n^2 \int_{\Omega} x^2 \mathrm{d}\rho_{\mathbb{P}_n}.$$

Moreover, the worst is coming...

Let's compute the energy for $\mathbb{P} \in \Pi_{GC}(\rho)$

$$\mathbb{P}(c_{\mathcal{RH}}) := \sum_{n>1} \int_{\Omega^n} -\sum_{i< j}^n |x_i - x_j|^2 \mathrm{d}\mathbb{P}_n = \sum_{n>1} \int_{\Omega^n} h(\sum_{i=1}^n x_i) \mathrm{d}\mathbb{P}_n - \sum_{n>1} n^2 \int_{\Omega} x^2 \mathrm{d}\rho_{\mathbb{P}_n}.$$

Moreover, the worst is coming...

Proposition

Let $c_n(x_1, \cdots, x_n) = -\sum_{i < j} w(x_i, x_j)$ such that $\int_{\Omega^2} w(x, y) d\rho(x) d\rho(y) > 0$, then

$$\inf(GC) = -\infty.$$

Sketch of proof: Choose \mathbb{P} s.t.

•
$$\mathbb{P}_{K} = Z_{K} \left(\frac{\rho^{\otimes K}}{NK} \right)$$
 with $Z_{K} = \frac{K!K^{K-1}}{N^{K-1}};$

•
$$\mathbb{P}_0 = 1 - \frac{N}{K};$$

•
$$\mathbb{P}_n(\Omega^n) = 0 \ \forall n \neq 0, K.$$

Let's compute the energy for $\mathbb{P} \in \Pi_{GC}(\rho)$

$$\mathbb{P}(c_{\mathcal{RH}}) := \sum_{n>1} \int_{\Omega^n} -\sum_{i< j}^n |x_i - x_j|^2 \mathrm{d}\mathbb{P}_n = \sum_{n>1} \int_{\Omega^n} h(\sum_{i=1}^n x_i) \mathrm{d}\mathbb{P}_n - \sum_{n>1} n^2 \int_{\Omega} x^2 \mathrm{d}\rho_{\mathbb{P}_n}.$$

Moreover, the worst is coming...

Proposition

Let $c_n(x_1, \cdots, x_n) = -\sum_{i < j} w(x_i, x_j)$ such that $\int_{\Omega^2} w(x, y) d\rho(x) d\rho(y) > 0$, then

$$\inf(GC) = -\infty.$$

Sketch of proof: Choose \mathbb{P} s.t.

Then,

•
$$\mathbb{P}_{K} = Z_{K} \left(\frac{\rho^{\otimes^{K}}}{\bar{N}K} \right)$$
 with $Z_{K} = \frac{K!K^{K-1}}{\bar{N}^{K-1}};$

•
$$\mathbb{P}_0 = 1 - \frac{N}{K};$$

•
$$\mathbb{P}_n(\Omega^n) = 0 \ \forall n \neq 0, K.$$

$$\mathbb{P}(c) = -\frac{K-1}{2\langle N \rangle} \underbrace{\int_{\Omega^2} w(x, y) d\rho(x) d\rho(y)}_{>0}$$

Remark: take $w(x, y) = |x - y|^2!$

Let us consider the Poisson GC state \mathbb{G}_ρ given by

$$\mathbb{G}_{\rho,\mathbf{0}} = e^{-\rho(\Omega)}, \ \mathbb{G}_{\rho,n} = e^{-\rho(\Omega)} \frac{\rho^{\otimes n}}{n!},$$

then the entropic Grand-Canonical problem at T > 0 reads

$$\mathfrak{F}_{\mathcal{T}}(
ho):=\inf_{\mathbb{P}\in \mathsf{\Pi}_{GC}(
ho)}\{\mathbb{P}(c)+\mathcal{TH}(\mathbb{P},\mathbb{G}_{
ho})\},$$

where $\mathbb{P}(c) := \sum_{n>1} \int_{\Omega^n} c_n(x_1, \cdots, x_n) d\mathbb{P}_n$ Some results:

- $\mathcal{F}_{\mathcal{T}}(\rho)$ admits a unique minimizer $\mathbb{P}^{(\mathcal{T})}$ for all $\mathcal{T} > 0$.
- we have $\lim_{T\to 0^+} \mathcal{F}_T(\rho) = \inf_{\substack{\mathbb{P}\in \Pi_{GC}(\rho)\\\mathcal{H}(\mathbb{P},\mathbb{G}_\rho)<\infty}} \mathbb{P}(c)$
- Assume that $\mathbb{G}_{\rho}(c) < \infty$ then $\lim_{T \to \infty} \mathfrak{F}_{T}(\rho) = \mathbb{G}_{\rho}(c)$

Thank You!!

Given the partition function for a measurable potential $\boldsymbol{\phi}$

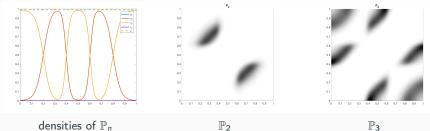
$$Z_{T,\rho}(\phi) := e^{-\frac{c_0}{T}-\rho(\Omega)} + \sum_{n\geq 1} \frac{e^{-\rho(\Omega)}}{n!} \int_{\Omega^n} \exp\left(\frac{-c_n + \sum_{j=1}^n \phi(x_j)}{T}\right) d\rho^{\otimes n}.$$

Then one can prove strong duality,

$$\mathcal{F}_{\mathcal{T}}(\rho) = \sup_{\int e^{-\phi/T} < \infty} \left\{ \int \phi d\rho - T \log Z_{\mathcal{T}}(\phi) \right\},$$

and existence of an optimal potential such that unique minimiser of $\mathcal{F}_{\mathcal{T}}(\rho)$ is given by the Gibbs state \mathbb{P}_{ϕ}

$$\mathbb{P}_{\phi,\mathbf{0}} = \frac{e^{-\frac{c_{\mathbf{0}}}{T} - \rho(\Omega)}}{Z_{T,\rho}(\phi)}, \qquad \mathbb{P}_{\phi,n} = \frac{e^{\frac{-c_{n} + \sum_{j=1}^{n} \phi(x_{j})}{T} - \rho(\Omega)} \rho^{\otimes n}}{Z_{T,\rho}(\phi) n!}.$$



17