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Neural networks



Neural networks

•Neural networks are parameterized functions from an input space (text, images, 
sounds) to an output space (vector space, text, …)

fθ(x)

Parameters Inputs

•Parameters  live in a vector space. The way the parameters define the transform 
 is called the network’s architecture.

θ
f



Neural networks as a chain of simple transforms

•To build a complicated function , we chain simpler transformsfθ

x0 = x
xl+1 = f l

θl(xl)

fθ(x) = xL, θ = (θ0, …, θL−1)

where each  is a simple functionf l
θl



The simplest transform: Multi-Layer-Perceptron (MLP)

•A MLP is a map from  to  parameterized by , where  
are matrices and  are vectors. The hidden dimension is .

ℝd ℝp θ = (W1, W2, b1, b2) Wi
bi h = dim(b1)

fθ(x) = W2σ(W1x + b1) + b2

•The element-wise function  is a Rectified Linear Unit (ReLU):  

•These functions are universal approximators [Cybenko 89]: any continuous 
function on a compact can be approximated by :

σ σ(u) = max(u,0)

fθ
∀f, ε > 0,∃h, θ such that ∥f − fθ∥∞ ≤ ε



Going deep with residual connections
• Iterating only MLPs leads to instability: 

training becomes harder and harder with 
depth. 

•Residual connections is a simple way to 
facilitate training

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

• Intuition: it is easy to learn to do 
nothing: simply take , the 
layer has no effect.

θl = 0 xl+1 = xl + f l
θl(xl)

xl+1 = f l
θl(xl)



Link with dynamical systems
xl+1 = xl + f l

θl(xl)

• If the functions  are all the same, this is an Euler discretization (with step 1) of the 
ordinary differential equation:

f l

dx
dt

= fθ(t)(x(t))

•Makes a parallel between deep residual 
networks and dynamical systems 

•Precise link between the two studied in [2, 3]
[1] Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential 
equations." Advances in neural information processing systems 31 (2018). 

[2] Barboni, Raphaël, Gabriel Peyré, and François-Xavier Vialard. "On global convergence of ResNets: From finite 
to infinite width using linear parameterization." Advances in Neural Information Processing Systems 35 (2022) 

[3] Sander, Michael, Pierre Ablin, and Gabriel Peyré. "Do Residual Neural Networks discretize Neural Ordinary 
Differential Equations?." Advances in Neural Information Processing Systems 35 (2022)



A bestiary of transforms for each application

• In vision and audio signal processing: convolutions

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

•Stacking them gives deep 
convolutional networks (CNNs)



A bestiary of transforms for each application

• In text processing: recurrent neural networks to 
encode the recurrent nature of language.

Sepp Hochreiter, Jürgen Schmidhuber, “Long short-term memory”, 1997



Transformers: an all-purpose 
architecture? 
How does chat-GPT works?



Transformers are used everywhere

•Most widely used architectures for computer vision: Transformers 
•Most widely used architectures for text processing: Transformers 
•Most widely used architecture for audio processing: Transformers 
•Chat-GPT built upon GPT: Generative Pretraining Transformers



How can we have the same architecture 
for all these different modalities? 



Transformers are sequence-to-sequence mappings

•The input to a transformer is not a single vector  but a sequence of vectors 
 where each  is in  

• It outputs a sequence of same length  where each  is in  

• It processes sequences of arbitrary length:  can change from input to input.

x
X = (x1, …, xn) xi ℝd

Y = (y1, …, yn) yi ℝd

n

Transformer

x1 x2 x3 x4 y1 y2 y3 y4



Transformers from scratch

•How to turn an input into a sequence of vectors?  
•This process is called tokenization. It depends on the input space.



Text tokenizer
•From https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


Text tokenizer

•Each token ID is then mapped to a high dimensional vector. The mapping is 
learned (it is part of the parameters of the transformer ). 

•There is one learned vector for each token id in the vocabulary.

θ

x1 x2 x3 x4 x5



Image tokenizer x1 x2 x3 x4 x5 x6 x7 x8 x9

Flatten patches



Positional encoding

•At this point in the process, ordering of the vectors is crucial. 
•Positional encoding encodes the position of the vectors into the vectors 

themselves.

x1 x2 x3 x4

Ordering matters

y1 y2 y3 y4

Ordering can be recovered  
by looking at vector only

• Simple solution: append a 
coordinate:  

• In practice, more complicated 
methods are used

yi = [xi, i]



So far…

•We have transformed an input (image or text) into a sequence of vectors for which 
the ordering does not matter. 

•The transformer is then composed of two repeated simple operations.

x1 x2 x3 x4



The two core building blocks: MLPs 
and Attention



Individual MLPs

•Each vector  is in We use an MLP that acts on each vector individually:xi ℝd .

x1 x2 x3 x4

fθ((x1, …, xn)) = (MLPθ(x1), …, MLPθ(xn))



Vector interactions with attention

•The most important function in a Transformer is Attention.

(y1, …, yn) = Attn((x1, …, xn))

• It makes vectors interact with each other:  depends on all the other .yi xj

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d



Attention

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d

•Compute the queries, keys and values

qi = WQxi, ki = WKxi,  and vi = WVxi

•The i-th output vector  is a convex combination of the values:yi

yi =
n

∑
j=1

wijvj,  with wij > 0 and ∑
j

wij = 1

•Weights depend on the alignement between the query  and all the keys :qi kj

wij = softmax((⟨qi, kj⟩))j :=
exp(⟨qi, kj⟩)

∑n
l=1 exp(⟨qi, kl⟩)



Attention: intuition

•The coefficient  is large when  and  are 
well aligned. 

wij qi kj

•Allows to focus on 
important links between 
tokens



Full transformer architecture

•Stack Attention and MLPs, using residual connections

Z = X + Attn(X)

Y = Z + MLP(Z)



The subtle bits: normalization layers

•There are also normalization layers. Simplest one is called RMSNorm.  
•Acts on vectors individually.  

•Trainable parameters β ∈ ℝd

Norm((x1, …, xn)) = (y1, …, yn)

yi = β ⊙
xi

∥xi∥

•Projects the vectors on an ellipsis. Z = X + Attn(Norm(X))

Y = Z + MLP(Norm(Z))



The subtle bits: multi-head attention

•Attention is not flexible enough; can only focus on one specific interaction 
between vectors.  

•Multi-head attention: use multiple attention layers in parallel, and then aggregate 
them

MultiAttn(X) =
h

∑
l=1

Attnl(X)

Z = X + MultiAttn(Norm(X))

Y = Z + MLP(Norm(Z))



The subtle bits: multi-head attention

MultiAttn(X) =
h

∑
l=1

Attnl(X)Head 1 Head 2



Attention: a measure-to-measure map



Attention

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d

•Compute the queries, keys and values

qi = WQxi, ki = WKxi,  and vi = WVxi

•The i-th output vector  is a convex combination of the values:yi

yi =
n

∑
j=1

wijvj,  with wij > 0 and ∑
j

wij = 1

•Weights depend on the alignement between the query  and all the keys :qi kj

wij = softmax((⟨qi, kj⟩))j :=
exp(⟨qi, kj⟩)

∑n
l=1 exp(⟨qi, kl⟩)



Key insight: Attention is equivariant w.r.t. permutations

•For  a permutation from  to :σ {1,…, n} {1,…, n}

Attn(x1, …, xn) = (y1, …, yn)

Attn(xσ(1), …, xσ(n)) = (yσ(1), …, yσ(n))
•Same for the MLP and Normalization 
•The whole transformer architecture, apart from the initial positional 

encoding, is permutation-equivariant!



Extending attention to measures

Attn(x1, …, xn) = (y1, …, yn) yi =
∑n

j=1 exp(xT
i WT

QWT
K xj)WVxj

∑n
j=1 exp(xT

i WT
QWT

Kxj)

Γμ(x) =
∫ exp(xTWT

QWT
Kz)WVzdμ(z)

∫ exp(xTWT
QWT

Kz)dμ(z)
•Define the measure map for :μ ∈ 𝒫(ℝd)

We have  with yi = Γμ(xi) μ =
1
n

n

∑
i=1

δxi

Extension: 
Attn(μ) = (Γμ)#μSander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers 

with doubly stochastic attention." In International Conference on Artificial Intelligence and 
Statistics, pp. 3515-3530. PMLR, 2022.



Attention + Neural ODE = 
Continuity equation



Residual attention

(y1, …, yn) = (x1, …, xn) + Attn(x1, …, xn)

•Equivalent to the continuity equation: ∂tμ + div(μΓμ) = 0

Sander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers 
with doubly stochastic attention." In International Conference on Artificial Intelligence and 
Statistics, pp. 3515-3530. PMLR, 2022.

•Can then be used to study theoretical properties of transformers 
•Normalization in the attention makes existence of solution non trivial / 

interesting

•Euler discretization of the ODE ·xi = Γμ(xi)
Γμ(x) =

∫ exp(xTWT
QWT

Kz)WVzdμ(z)

∫ exp(xTWT
QWT

Kz)dμ(z)

Geshkovski, Borjan, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. "The emergence of 
clusters in self-attention dynamics." Advances in Neural Information Processing Systems 36 
(2024).



Lipschitz constant of attention 

Why do we care about Lipschitz 
constants?



Robustness to adversarial attacks

•An adversarial attack is a small perturbation to the input of a network that leads to 
large change in the output:

<latexit sha1_base64="nPtQZJRFq3J7+Iv5qWgYVFOYPyM=">AAACT3icbVHLThtBEJw1JIDzwMAxlxZWJKMk1m4UHkdELjmChAHJa1m9417viNmHZnoTW4v/kEtyy2/kkkOiKGN7kQikpJFKVdXzqIkKrSz7/nevsbL65Ona+kbz2fMXLzdbW9sXNi+NpJ7MdW6uIrSkVUY9VqzpqjCEaaTpMrr+OPcvP5OxKs/OeVrQIMVxpmIlkZ00bMXhiDQjhEwTrsCWMgFOkGEG4U08rEJOiHHWmbyBZXIP3kHcmew5G8LxuFbf3m3wRXGymF3q85DWEAxbbb/rLwCPSVCTtqhxOmx9C0e5LFPKWGq0th/4BQ8qNKykplkzLC0VKK9xTH1HM0zJDqpFHzN47ZQRxLlxK2NYqPcnKkytnaaRS6bIiX3ozcX/ef2S46NBpbKiZMrk8qC41MA5zMuFkTIkWU8dQWmUuyvIBA1Kdl/QdCUED5/8mFy87wYH3f2zD+3jk7qOdfFK7IqOCMShOBafxKnoCSluxQ/xS/z2vno/vT+NOtrwarIj/kFj4y95Z7JX</latexit>

� such that kf✓(x+ �)� f(x)k � �, with k�k ⌧ 1



Robustness to adversarial attacks (contd.)
• If a network is Lipschitz, we know that by definition 

Hence, the network is hard to attack.  

Lipschitzness certifies robustness

<latexit sha1_base64="7g8yq4J2vv0xORI3wuj3KwcyN60=">AAACHXicbVDJSgNBEO1xN25Rj14agxARw4y4HUUvHjwoGBXSYejp1JgmPYvdNWKY5Ee8+CtePCjiwYv4N3aWg9uDgsd7VVTVC1IlDbrupzMyOjY+MTk1XZiZnZtfKC4uXZgk0wKqIlGJvgq4ASVjqKJEBVepBh4FCi6D1lHPv7wFbWQSn2M7hXrEr2MZSsHRSn5xm3VCP2fYBOTd8t0GZQ1QyNfpJg3Ld+uUdShTcENP/JB1Bh7r+MWSW3H7oH+JNyQlMsSpX3xnjURkEcQoFDem5rkp1nOuUQoF3QLLDKRctPg11CyNeQSmnve/69I1qzRomGhbMdK++n0i55Ex7SiwnRHHpvnt9cT/vFqG4X49l3GaIcRisCjMFMWE9qKiDalBoGpbwoWW9lYqmlxzgTbQgg3B+/3yX3KxVfF2Kztn26WDw2EcU2SFrJIy8cgeOSDH5JRUiSD35JE8kxfnwXlyXp23QeuIM5xZJj/gfHwBUzig1w==</latexit>

kf✓(x+ �)� f(x)k  Lfk�k

• In most cases, we only care about perturbation of  in the “data manifold”: care 
only about local Lipschitz constant on the manifold. 

•Hard to compute, hard to control.

x

Cisse, Moustapha, et al. "Parseval networks: Improving robustness to adversarial examples." International conference on machine learning. PMLR, 2017.



Building invertible neural networks

•Theorem: If  is L-Lipschitz with  then  is 
invertible, i.e. for any  the equation  has one and only one solution.

f : ℝp → ℝp L < 1 x ↦ x + f(x)
y y = x + f(x)

•To invert the map, simply iterate xn+1 = y − f(xn)

Behrmann, Jens, et al. "Invertible residual networks." International conference on machine learning. PMLR, 2019.

•Hence, if we having <1 Lipschitz building blocks, we can design residual networks 
that are invertible by design. 

•Invertible networks usecases: 

1. Generative modeling (normalizing flows) 

2.Memory-efficient backprop (no need to store activations)



Global Lipschitz constant of attention ?

•We need to find an input sequence   and small displacements 
 such that  is as far from  as 

possible. 

•Simplify things: assume , and dim = 1 

In this simple case: 

(x1, …, xn)
(d1, …, dn) Att(x1 + d1, …, xn + dn) Att(x1, …xn)

WQ = WK = WV = I

Attn(x1, …, xn)i =
∑n

j=1 exp(xixj)xj

∑n
j=1 exp(xixj)

Problem:  product interaction. The function  is not Lipschitz for 
any non-constant function .

ϕ(x, y) = σ(xy)
σ



What if inputs are bounded?

Estimate  with  ball of radius L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2 B(R) R

Castin, Valérie, Pierre Ablin, and Gabriel Peyré. "Understanding the Regularity of Self-Attention 
with Optimal Transport." arXiv preprint arXiv:2312.14820 (2023).



Large n limit

Estimate   

with  ball of radius 

L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2

B(R) R

•Catastrophic scaling in the limit :  

• Intuition: take in 1d  

•With a fixed number of vectors , need  to achieve this bound

n → ∞ L(n, R) ≃n→+∞ R2 exp(R2)

μ = exp(−R2)δR + (1 − exp(−R2))δ−R

n n ≃ exp(R2)



Generic bound

Estimate   

with  ball of radius 

L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2

B(R) R

•Generic bound :  

•Tight when  

L(n, R) ≤ nR2

n ≃ exp(R2)



Large R limit

•Large radius regime:  

•This is observed in practice!

lim
R→+∞

∥Jac(Attn)(Rx1, …, Rxn))∥2 ≤ n



Experiment

•Take sentences from Alice in Wonderland, and look at local Lipschitz 
constant when going through a trained transformer. Vary the sequence 
length. 

•Local Lipschitz constant estimated with power method



Experiment
Bert model, layer 0 Bert model, layer 6 GPT2 model, layer 6



Conclusion

•Transformers are an all-purpose architecture used everywhere 
• It takes as input sequences of vectors 
•Apart from the initial positional encoding, it is permutation-equivariant, thus 

can be seen as acting on measures 
•The corresponding continuity equation is interesting and non-standard 
•The study of the regularity of the transformer leads to different surprising 

regimes



Thanks !


