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Neural networks




Neural networks

- Neural networks are parameterized functions from an input space (text, images,
sounds) to an output space (vector space, text, ...)

Jo(X)

. Parameters @ live in a vector space. The way the parameters define the transform
fis called the network’s architecture.



Neural networks as a chain of simple transforms

- To build a complicated functionfg, we chain simpler transforms

XO:X

[+1 [ (-1
X :fgl(x)

f,(x)=xt o=@ ..., 0"

where each f}, is a simple function



The simplest transform: Multi-Layer-Perceptron (MLP)

. AMLP is a map from R to R” parameterized by @ = (W,, W,, b, b,), where W,
are matrices and b; are vectors. The hidden dimension is 7 = dim(b,).

fox) = Woo(Wx + by) + b,

- The element-wise function ¢ is a Rectified Linear Unit (ReLU): 6(#) = max(u,0)

- These functions are universal approximators [Cybenko 89]: any continuous
function on a compact can be approximated by f@:

Vf,e > 0,3h,0 such that ||f— f,||., < €



Going deep with residual connections

- [terating only MLPs leads to instabillity:
training becomes harder and harder with
depth.

- Residual connections is a simple way to
facilitate training

- Intuition: it Is easy to learn to do
nothing: simply take @' = 0, the
layer has no effect.

|

He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.



Link with dynamical systems
Xl+1 — Xl +fé)l(xl)

- If the functionsfl are all the same, this is an Euler discretization (with step 1) of the
ordinary differential equation:

h

— = x(1

A fé’(t)( ())

- Makes a parallel between deep residual
networks and dynamical systems

Residual Network ODE Network

. Precise link between the two studied in [2, 3]

[1] Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential
equations." Advances in neural information processing systems 31 (2018).
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to infinite width using linear parameterization." Advances in Neural Information Processing Systems 35 (2022)
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A bestiary of transforms for each application

- In vision and audio signhal processing: convolutions

- Stacking them gives deep
convolutional networks (CNNSs)

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).



A bestiary of transforms for each application

- In text processing: recurrent neural networks to
encode the recurrent nature of language.
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Sepp Hochreiter, Jurgen Schmidhuber, “Long short-term memory”, 1997



Transformers: an all-purpose
architecture?
How does chat-GPT works?




Transformers are used everywhere

- Most widely used architectures for computer vision: Transformers
- Most widely used architectures for text processing: Transformers
- Most widely used architecture for audio processing: Transformers

- Chat-GPT built upon GPT: Generative Pretraining Transformers



How can we have the same architecture
for all these different modalities?



Transformers are sequence-to-sequence mappings

- The input to a transformer is not a single vector x but a sequence of vectors
X = (x{, ...,Xx,) where each x;isin | d

- It outputs a sequence of same length ¥ = (y;, ...,y ) whereeach y.isin |

. |t processes seqguences of arbitrary length: n can change from input to input.
Xy, X3 X4

1 2 3 4
I I I I . Transformer =N I I I I




Transformers from scratch

- How to turn an input into a sequence of vectors?

- This process is called tokenization. It depends on the input space.



Text tokenizer

- From https://platform.openai.com/tokenizer

p : ,
: . My name is Théo.
My name is Pierre.

\,

Clear Show example Clear Show example

Tokens Characters Tokens Characters

5 18 6 16

My name is Pierre. My name is Théo.

[5159, 836, 374, 38077, 13] [5159, 836, 374, 666, 89577, 13]

( Token IDs ) ( Token IDs )



https://platform.openai.com/tokenizer

Text tokenizer Y X X X

_ I I I I I
Token IDs

- Each token ID is then mapped to a high dimensional vector. The mapping is
learned (it is part of the parameters of the transformer 6).

- There is one learned vector for each token id in the vocabulary.



Image tokenizer 1 2 B 4 X5 Y &R X




Positional encoding

- At this point in the process, ordering of the vectors is crucial.

- Positional encoding encodes the position of the vectors into the vectors
themselves.

- Simple solution: append a
coordinate: y. = |x;, [}

- In practice, more complicated
methods are used




So far...

- We have transformed an input (image or text) into a sequence of vectors for which
the ordering does not matter.

- The transformer is then composed of two repeated simple operations.

Xy X3 X4



The two core building blocks: MLPs
and Attention




Individual MLPs

- Each vector x; is in | 9 We use an MLP that acts on each vector individually:

fo((x(s ..., x,)) = (MLPy(x,), ..., MLPy(x,))

Xy X3 X4



Vector interactions with attention

- The most important function in a Transformer is Attention.

V(s ---5¥,) = Attn((xy, ..., X,))

- It makes vectors interact with each other: y; depends on all the other x;.

. Parameterized by three matrices 6 = (WQ, We, Wy) € 1 dxd

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Attention

. Parameterized by three matrices 6 = (WQ, We, Wy) € 1 dxd

- Compute the queries, keys and values

17 71

- The I-th output vector y; Is a convex combination of the values:

yo= Y wiv, withw; > 0and Y w, =1
=1 -

J

- Weights depend on the alignement between the query ¢; and all the keys kJ

exp({g;, k;))
=1 > ™




Attention: intuition

- The coefficient w;; Is large when g; and k] are
well aligned.

- Allows to focus on
important links between
tokens

It

IS

In

this

spirit

that

a
majority
of
American
governments
have
passed
new

laws
since
2009
making
the
registration
or

voting

p i
m 0 re «

. liifficult

<EOS>

It

IS

In

this

spirit

that

a
majority
of
American
governments
have
passed
new

laws
since
2009

> making
" the

registration
or

voting
process
more
difficult

<EOS>



Output Probability
(next token)

Full transformer architecture o
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The subtle bits: normalization layers

- There are also normalization layers. Simplest one is called RMSNorm.

- Acts on vectors individually.

- Trainable parameters ff € |

Norm((xy, ..., X)) = (V15 -5 V)

A
yi=pO
;|

- Projects the vectors on an ellipsis.




The subtle bits: multi-head attention

- Attention is not flexible enough; can only focus on one specific interaction
between vectors.

- Multi-head attention: use multiple attention layers in parallel, and then aggregate
them

h
MultiAttn(X) = Z Attn/(X)
[=1




The subtle bits: multi-head attention
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Attention: a measure-to-measure map




Attention

. Parameterized by three matrices 6 = (WQ, We, Wy) € 1 dxd

- Compute the queries, keys and values

17 71

- The I-th output vector y; Is a convex combination of the values:

yo= Y wiv, withw; > 0and Y w, =1
=1 -

J

. Weights depend on the alignement between the query ¢; and all the keys kJ

exp({g;, k;))
=1 > ™




Key insight: Attention is equivariant w.r.t. permutations

Attn(x;, ..., x) = (yy, ..., V)

- For 0 a permutation from {1,...,n} to {1,...,n}:

Attn(xa(l), ceos xd(n)) — (yd(l)’ e oo ya(n))
- Same for the MLP and Normalization

- The whole transformer architecture, apart from the initial positional
encoding, Is permutation-equivariant!



Extending attention to measures
>,

j=1
ZJ exp(x/ WHWEx))

exp(x ng WKx )WVx
Attn(x, ..., x,) = (V{5 ---5 V) =

f exp(x TWg Wi2) Wy zdu(z)

. Define the measure map for y € P(RY): T (x) =
’ [ exp(xTWEWE2)du(z)

We have y; = 1 (x;) with u = 25
=1

Sander, Michael E., Pierre Ablin Mth u Blondel, a dGb IPy "Sinkforme T nsfor
with do nyt chastic tt ntion." In International Confer Atf IItIIg d
Statistics, pp. 3515-3530. PMLR 2022.




Attention + Neural ODE =
Continuity equation




Residual attention

Vis oo V) = (X5 ..., x,) + Attn(xy, ..., x,)
- | exp(x" WoWiz) Wy zdu(z)

1 —
) [ exp(xTWEWE2)du(z)

- Equivalent to the continuity equation: _

- Can then be used to study theoretical properties of transformers

. Euler discretization of the ODE x; = I (x;)

- Normalization in the attention makes existence of solution non trivial /
Interesting

Sander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers Geshkovski, Borjan, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. "The emergence of
with doubly stochastic attention." In International Conference on Artificial Intelligence and clusters in self-attention dynamics." Advances in Neural Information Processing Systems 36
Statistics, pp. 3515-3530. PMLR, 2022. (2024).



Lipschitz constant of attention

Why do we care about Lipschitz
constants?



Robustness to adversarial attacks

An adversarial attack is a small perturbation to the input of a network that leads to
large change in the output:

6 such that ||fo(x +9) — f(z)]| > 4, with ||/|| < 1
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Robustness to adversarial attacks (contd.)

- If a network is Lipschitz, we know that by definition

|fo(x +-0) = flz)|| < Ly |l]]

Hence, the network is hard to attack.

Lipschitzness certifies robustness

- In most cases, we only care about perturbation of x in the “data manifold”: care
only about local Lipschitz constant on the manifold.

- Hard to compute, hard to control.

Cisse, Moustapha, et al. "Parseval networks: Improving robustness to adversarial examples." International conference on machine learning. PMLR, 2017.



Building invertible neural networks

« Theorem: If f : R” — RP”is L-Lipschitz with L < 1 thenx — x + f(x) is
invertible, i.e. for any y the equation y = x + f(x) has one and only one solution.

- To invert the map, simply iterate x, . | = y — f(x,)

- Hence, if we having <1 Lipschitz building blocks, we can design residual networks
that are invertible by design.

- Invertible networks usecases:

1. Generative modeling (hormalizing flows)

2.Memory-efficient backprop (no need to store activations)

Behrmann, Jens, et al. "Invertible residual networks." International conference on machine learning. PMLR, 2019.



Global Lipschitz constant of attention ?

- We need to find an input sequence (x;, ..., x,) and small displacements

(dy, ...,d,) such that Att(x; + d,, ..., x, + d,) is as far from Att(x,, ...x,) as
possible.

- Simplify things: assume W, = Wi = Wy, = [,and dim =1

n
. ijl expX;x)x;
In this simple case: Attn(xy, ..., x,); =

ijl exp(x;x;)

Problem: product interaction. The function @(x, y) = o(xy) is not Lipschitz for
any non-constant function o.



What if inputs are bounded?

Estimate L(n,R) =  sup  |[Jac(Attn)(x,, ..., x,))||, with B(R) ball of radius R
X15---X,EB(R)

Castin, Valérie, Pierre Ablin, and Gabriel Peyré. "Understanding the Regularity of Self-Attention
with Optimal Transport." arXiv preprint arXiv:2312.14820 (2023).



Large n limit

Estimate L(n,R) =  sup  [|[Jac(Attn)(xy,...,x )|,
X15---X,EB(R)

with B(R) ball of radius R

- Catastrophic scaling in the limitn — oco: L(n,R) ~, . & exp(Rz)

- Intuition: take in 1d u = exp(—Rz)éR + (1 — exp(—Rz))é_R

- With a fixed number of vectors n, need n =~ exp(Rz) to achieve this bound



Generic bound

Estimate L(n,R) =  sup  [|[Jac(Attn)(xy,...,x )|,
X15---X,EB(R)

with B(R) ball of radius R

. Generic bound : L(n, R) < \/%Rz
. Tight when 11 =~ exp(R?)



Large R limit

.Large radius regime: lim ||Jac(Attn)(Rxy,...,Rx,))||, < ﬁ
R—400

- This is observed in practice!



Experiment

- Take sentences from Alice in Wonderland, and look at local Lipschitz

constant when going through a trained transformer. Vary the sequence
length.

- Local Lipschitz constant estimated with power method



Experiment
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Conclusion

- Transformers are an all-purpose architecture used everywhere
- |t takes as input sequences of vectors

- Apart from the initial positional encoding, it is permutation-equivariant, thus
can be seen as acting on measures

- The corresponding continuity equation is interesting and non-standard

- The study of the regularity of the transformer leads to different surprising
regimes






