Transformers, Dynamical Systems and Optimal Transport.

Pierre Ablin
Joint work with Valérie Castin, Michael Sander and Gabriel Peyré

Neural networks

Neural networks

- Neural networks are parameterized functions from an input space (text, images, sounds) to an output space (vector space, text, ...)

- Parameters θ live in a vector space. The way the parameters define the transform f is called the network's architecture.

Neural networks as a chain of simple transforms

- To build a complicated function $f_{\theta 1}$, we chain simpler transforms

$$
\begin{aligned}
x^{0} & =x \\
x^{l+1} & =f_{\theta^{l}}^{l}\left(x^{l}\right) \\
f_{\theta}(x) & =x^{L}, \theta=\left(\theta^{0}, \ldots, \theta^{L-1}\right)
\end{aligned}
$$

where each $f_{\theta^{l}}^{l}$ is a simple function

The simplest transform: Multi-Layer-Perceptron (MLP)

- A MLP is a map from \mathbb{R}^{d} to \mathbb{R}^{p} parameterized by $\theta=\left(W_{1}, W_{2}, b_{1}, b_{2}\right)$, where W_{i} are matrices and b_{i} are vectors. The hidden dimension is $h=\operatorname{dim}\left(b_{1}\right)$.

$$
f_{\theta}(x)=W_{2} \sigma\left(W_{1} x+b_{1}\right)+b_{2}
$$

-The element-wise function σ is a Rectified Linear Unit (ReLU): $\sigma(u)=\max (u, 0)$
-These functions are universal approximators [Cybenko 89]: any continuous function on a compact can be approximated by f_{θ} :

$$
\forall f, \varepsilon>0, \exists h, \theta \text { such that }\left\|f-f_{\theta}\right\|_{\infty} \leq \varepsilon
$$

Going deep with residual connections

- Iterating only MLPs leads to instability: training becomes harder and harder with depth.
- Residual connections is a simple way to facilitate training
- Intuition: it is easy to learn to do nothing: simply take $\theta^{l}=0$, the layer has no effect.

Link with dynamical systems

$$
x^{l+1}=x^{l}+f_{\theta^{\prime}}^{l}\left(x^{l}\right)
$$

- If the functions f^{l} are all the same, this is an Euler discretization (with step 1) of the ordinary differential equation:

$$
\frac{d x}{d t}=f_{\theta(t)}(x(t))
$$

- Makes a parallel between deep residual networks and dynamical systems
- Precise link between the two studied in [2, 3]

A bestiary of transforms for each application

- In vision and audio signal processing: convolutions

- Stacking them gives deep convolutional networks (CNNs)

A bestiary of transforms for each application

- In text processing: recurrent neural networks to encode the recurrent nature of language.

Transformers: an all-purpose architecture?
How does chat-GPT works?

Transformers are used everywhere

- Most widely used architectures for computer vision: Transformers
- Most widely used architectures for text processing: Transformers
- Most widely used architecture for audio processing: Transformers
- Chat-GPT built upon GPT: Generative Pretraining Transformers

How can we have the same architecture for all these different modalities?

Transformers are sequence-to-sequence mappings

-The input to a transformer is not a single vector x but a sequence of vectors $X=\left(x_{1}, \ldots, x_{n}\right)$ where each x_{i} is in \mathbb{R}^{d}

- It outputs a sequence of same length $Y=\left(y_{1}, \ldots, y_{n}\right)$ where each y_{i} is in \mathbb{R}^{d}
- It processes sequences of arbitrary length: n can change from input to input.

Transformers from scratch

-How to turn an input into a sequence of vectors?

- This process is called tokenization. It depends on the input space.

Text tokenizer

- From https://platform.openai.com/tokenizer

My name is Théo

Clear Show example
Tokens Characters
6
16
My name is Théo.

Text
Token IDs
[5159, 836, 374, 666, 89577, 13]

Token IDs
Token IDs

Text tokenizer

- Each token ID is then mapped to a high dimensional vector. The mapping is learned (it is part of the parameters of the transformer θ).
- There is one learned vector for each token id in the vocabulary.

Image tokenizer	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}

Positional encoding

- At this point in the process, ordering of the vectors is crucial.
-Positional encoding encodes the position of the vectors into the vectors themselves.

```
Ordering matters
Ordering can be recovered by looking at vector only
```


- Simple solution: append a coordinate: $y_{i}=\left[x_{i}, i\right]$
- In practice, more complicated methods are used

So far...

- We have transformed an input (image or text) into a sequence of vectors for which the ordering does not matter.
- The transformer is then composed of two repeated simple operations.

The two core building blocks: MLPs and Attention

Individual MLPs

- Each vector x_{i} is in \mathbb{R}^{d}. We use an MLP that acts on each vector individually:

$$
f_{\theta}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(M L P_{\theta}\left(x_{1}\right), \ldots, M L P_{\theta}\left(x_{n}\right)\right)
$$

Vector interactions with attention

-The most important function in a Transformer is Attention.

$$
\left(y_{1}, \ldots, y_{n}\right)=\operatorname{Attn}\left(\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- It makes vectors interact with each other: y_{i} depends on all the other x_{j}.
- Parameterized by three matrices $\theta=\left(W_{Q}, W_{K}, W_{V}\right) \in \mathbb{R}^{d \times d}$

Attention

- Parameterized by three matrices $\theta=\left(W_{Q}, W_{K}, W_{V}\right) \in \mathbb{R}^{d \times d}$
- Compute the queries, keys and values

$$
q_{i}=W_{Q} x_{i}, k_{i}=W_{K} x_{i}, \text { and } v_{i}=W_{V} x_{i}
$$

- The i-th output vector y_{i} is a convex combination of the values:

$$
y_{i}=\sum_{j=1}^{n} w_{i j} v_{j} \text {, with } w_{i j}>0 \text { and } \sum_{j} w_{i j}=1
$$

- Weights depend on the alignement between the query q_{i} and all the keys k_{j} :

$$
w_{i j}=\operatorname{softmax}\left(\left(\left\langle q_{i}, k_{j}\right\rangle\right)\right)_{j}:=\frac{\exp \left(\left\langle q_{i}, k_{j}\right\rangle\right)}{\sum_{l=1}^{n} \exp \left(\left\langle q_{i}, k_{l}\right\rangle\right)}
$$

Attention: intuition

- The coefficient $w_{i j}$ is large when q_{i} and k_{j} are well aligned.
- Allows to focus on important links between tokens

It	It
is	is
in	in
this	this
spirit	spirit
that	that
a	a
majority	majority
of	of
American	American
governments	governments
have	have
passed	passed
new	new
laws	laws
since	since
2009	2009
making	making
the	the
registration	registration
or	or
voting	voting
process	process
more	more
difficult	difficult
EOS	<EOS>

Full transformer architecture

- Stack Attention and MLPs, using residual connections

$$
\begin{aligned}
& Z=X+\operatorname{Attn}(X) \\
& Y=Z+\operatorname{MLP}(Z)
\end{aligned}
$$

The subtle bits: normalization layers

- There are also normalization layers. Simplest one is called RMSNorm.
- Acts on vectors individually.
- Trainable parameters $\beta \in \mathbb{R}^{d}$

$$
\begin{gathered}
\operatorname{Norm}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(y_{1}, \ldots, y_{n}\right) \\
y_{i}=\beta \odot \frac{x_{i}}{\left\|x_{i}\right\|}
\end{gathered}
$$

- Projects the vectors on an ellipsis.
$\mathrm{Z}=X+\operatorname{Attn}(\operatorname{Norm}(X))$ $Y=Z+M L P(\operatorname{Norm}(Z))$

The subtle bits: multi-head attention

- Attention is not flexible enough; can only focus on one specific interaction between vectors.
- Multi-head attention: use multiple attention layers in parallel, and then aggregate them

$$
\operatorname{MultiAttn}(X)=\sum_{l=1}^{h} \operatorname{Attn}^{l}(X)
$$

$$
\begin{aligned}
& Z=X+\operatorname{MultiAttn}(\operatorname{Norm}(X)) \\
& Y=Z+\operatorname{MLP}(\operatorname{Norm}(Z))
\end{aligned}
$$

The subtle bits: multi-head attention

Head 1

Head 2

Attention: a measure-to-measure map

Attention

- Parameterized by three matrices $\theta=\left(W_{Q}, W_{K}, W_{V}\right) \in \mathbb{R}^{d \times d}$
- Compute the queries, keys and values

$$
q_{i}=W_{Q} x_{i}, k_{i}=W_{K} x_{i}, \text { and } v_{i}=W_{V} x_{i}
$$

- The i-th output vector y_{i} is a convex combination of the values:

$$
y_{i}=\sum_{j=1}^{n} w_{i j} v_{j} \text {, with } w_{i j}>0 \text { and } \sum_{j} w_{i j}=1
$$

- Weights depend on the alignement between the query q_{i} and all the keys k_{j} :

$$
w_{i j}=\operatorname{softmax}\left(\left(\left\langle q_{i}, k_{j}\right\rangle\right)\right)_{j}:=\frac{\exp \left(\left\langle q_{i}, k_{j}\right\rangle\right)}{\sum_{l=1}^{n} \exp \left(\left\langle q_{i}, k_{l}\right\rangle\right)}
$$

Key insight: Attention is equivariant w.r.t. permutations

$$
\operatorname{Attn}\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)
$$

- For σ a permutation from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$:

$$
\operatorname{Attn}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=\left(y_{\sigma(1)}, \ldots, y_{\sigma(n)}\right)
$$

- Same for the MLP and Normalization
- The whole transformer architecture, apart from the initial positional encoding, is permutation-equivariant!

Extending attention to measures

$\operatorname{Attn}\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$

$$
y_{i}=\frac{\sum_{j=1}^{n} \exp \left(x_{i}^{T} W_{Q}^{T} W_{K}^{T} x_{j}\right) W_{V} x_{j}}{\sum_{j=1}^{n} \exp \left(x_{i}^{T} W_{Q}^{T} W_{K}^{T} x_{j}\right)}
$$

- Define the measure map for $\mu \in \mathscr{P}\left(\mathbb{R}^{d}\right): \Gamma_{\mu}(x)=\frac{\int \exp \left(x^{T} W_{Q}^{T} W_{K}^{T} z\right) W_{V} z d \mu(z)}{\int \exp \left(x^{T} W_{Q}^{T} W_{K}^{T} z\right) d \mu(z)}$ We have $y_{i}=\Gamma_{\mu}\left(x_{i}\right)$ with $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$

Extension:

Attention + Neural ODE = Continuity equation

Residual attention

$$
\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)+\operatorname{Attn}\left(x_{1}, \ldots, x_{n}\right)
$$

- Euler discretization of the ODE $\dot{x}_{i}=\Gamma_{\mu}\left(x_{i}\right)$

$$
\Gamma_{\mu}(x)=\frac{\int \exp \left(x^{T} W_{Q}^{T} W_{K}^{T} z\right) W_{V} z d \mu(z)}{\int \exp \left(x^{T} W_{Q}^{T} W_{K}^{T} z\right) d \mu(z)}
$$

- Equivalent to the continuity equation:

- Can then be used to study theoretical properties of transformers
- Normalization in the attention makes existence of solution non trivial / interesting

Lipschitz constant of attention

 Why do we care about Lipschitz constants?
Robustness to adversarial attacks

- An adversarial attack is a small perturbation to the input of a network that leads to large change in the output:

$$
\delta \text { such that }\left\|f_{\theta}(x+\delta)-f(x)\right\| \gg \delta, \text { with }\|\delta\| \ll 1
$$

"panda"
57.7\% confidence

noise
99.3\% confidence

Robustness to adversarial attacks (contd.)

- If a network is Lipschitz, we know that by definition

$$
\left\|f_{\theta}(x+\delta)-f(x)\right\| \leq L_{f}\|\delta\|
$$

Hence, the network is hard to attack.

Lipschitzness certifies robustness

- In most cases, we only care about perturbation of x in the "data manifold": care only about local Lipschitz constant on the manifold.
- Hard to compute, hard to control.

Building invertible neural networks

- Theorem: If $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is L-Lipschitz with $L<1$ then $x \mapsto x+f(x)$ is invertible, i.e. for any y the equation $y=x+f(x)$ has one and only one solution.
- To invert the map, simply iterate $x_{n+1}=y-f\left(x_{n}\right)$
- Hence, if we having <1 Lipschitz building blocks, we can design residual networks that are invertible by design.
- Invertible networks usecases:

1. Generative modeling (normalizing flows)
2.Memory-efficient backprop (no need to store activations)

Global Lipschitz constant of attention ?

- We need to find an input sequence $\left(x_{1}, \ldots, x_{n}\right)$ and small displacements $\left(d_{1}, \ldots, d_{n}\right)$ such that $\operatorname{Att}\left(x_{1}+d_{1}, \ldots, x_{n}+d_{n}\right)$ is as far from $\operatorname{Att}\left(x_{1}, \ldots x_{n}\right)$ as possible.
- Simplify things: assume $W_{Q}=W_{K}=W_{V}=I$, and dim $=1$

In this simple case: $\operatorname{Attn}\left(x_{1}, \ldots, x_{n}\right)_{i}=\frac{\sum_{j=1}^{n} \exp \left(x_{i} x_{j}\right) x_{j}}{\sum_{j=1}^{n} \exp \left(x_{i} x_{j}\right)}$

Problem: product interaction. The function $\phi(x, y)=\sigma(x y)$ is not Lipschitz for any non-constant function σ.

What if inputs are bounded?

Estimate $\left.L(n, R)=\sup \quad \| \operatorname{Jac}(\operatorname{Attn})\left(x_{1}, \ldots, x_{n}\right)\right) \|_{2}$ with $B(R)$ ball of radius R $x_{1}, \ldots, x_{n} \in B(R)$

Large n limit

$$
\text { Estimate } \left.L(n, R)=\sup _{x_{1}, \ldots, x_{n} \in B(R)} \| \operatorname{Jac}(\operatorname{Attn})\left(x_{1}, \ldots, x_{n}\right)\right) \|_{2}
$$

with $B(R)$ ball of radius R

- Catastrophic scaling in the limit $n \rightarrow \infty: L(n, R) \simeq_{n \rightarrow+\infty} R^{2} \exp \left(R^{2}\right)$
- Intuition: take in $1 \mathrm{~d} \mu=\exp \left(-R^{2}\right) \delta_{R}+\left(1-\exp \left(-R^{2}\right)\right) \delta_{-R}$
-With a fixed number of vectors n, need $n \simeq \exp \left(R^{2}\right)$ to achieve this bound

Generic bound

Estimate $\left.L(n, R)=\sup _{x_{1}, \ldots, x_{n} \in B(R)} \| \operatorname{Jac}(\operatorname{Attn})\left(x_{1}, \ldots, x_{n}\right)\right) \|_{2}$

with $B(R)$ ball of radius R

- Generic bound : $L(n, R) \leq \sqrt{n} R^{2}$
- Tight when $n \simeq \exp \left(R^{2}\right)$

Large R limit

. Large radius regime: $\left.\lim _{R \rightarrow+\infty} \| \operatorname{Jac}(\operatorname{Attn})\left(R x_{1}, \ldots, R x_{n}\right)\right) \|_{2} \leq \sqrt{n}$

- This is observed in practice!

Experiment

- Take sentences from Alice in Wonderland, and look at local Lipschitz constant when going through a trained transformer. Vary the sequence length.
- Local Lipschitz constant estimated with power method

Experiment

Bert model, layer 0
Bert model, layer 6
GPT2 model, layer 6

Conclusion

- Transformers are an all-purpose architecture used everywhere
- It takes as input sequences of vectors
- Apart from the initial positional encoding, it is permutation-equivariant, thus can be seen as acting on measures
- The corresponding continuity equation is interesting and non-standard
- The study of the regularity of the transformer leads to different surprising regimes

Thanks !

