Transformers, Dynamical Systems and Optimal Transport.

Pierre Ablin Joint work with Valérie Castin, Michael Sander and Gabriel Peyré

Neural networks

Neural networks

sounds) to an output space (vector space, text, ...)

f is called the network's **architecture**.

Neural networks are parameterized functions from an input space (text, images,

• Parameters θ live in a vector space. The way the parameters define the transform

Neural networks as a chain of simple transforms

• To build a complicated function f_{θ} , we chain simpler transforms

where each f_{Al}^{l} is a simple function

- $x^0 = x$ $x^{l+1} = f^l_{\mathcal{A}^l}(x^l)$ $f_{\theta}(x) = x^{L}, \theta = (\theta^{0}, \dots, \theta^{L-1})$

The simplest transform: Multi-Layer-Perceptron (MLP)

• A MLP is a map from \mathbb{R}^d to \mathbb{R}^p parameterized by $\theta = (W_1, W_2, b_1, b_2)$, where W_i are matrices and b_i are vectors. The hidden dimension is $h = \dim(b_1)$.

$$f_{\theta}(x) = W_2 \sigma(W_1 x + b_1) + b_2$$

- The element-wise function σ is a Rectified Linear Unit (ReLU): $\sigma(u) = \max(u, 0)$
- These functions are universal approximators [Cybenko 89]: any continuous function on a compact can be approximated by f_{θ} :

 $\forall f, \varepsilon > 0, \exists h, \theta \text{ such that } || f - f_{\theta} ||_{\infty} \leq \varepsilon$

Going deep with residual connections

- Iterating only MLPs leads to instability: training becomes harder and harder with depth.
- Residual connections is a simple way to facilitate training

 Intuition: it is easy to learn to do *nothing*: simply take $\theta^l = 0$, the layer has no effect.

 $x^{l+1} = f^l_{\mathit{Al}}(x^l)$

 $x^{l+1} = x^l + f^l_{A^l}(x^l)$

Link with dynamical systems

• If the functions f^l are all the same, this is an Euler discretization (with step 1) of the ordinary differential equation:

$$\frac{dx}{dt} = f_{\theta(t)}(x(t))$$

 Makes a parallel between deep residual networks and dynamical systems

Precise link between the two studied in [2, 3]

[1] Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential equations." Advances in neural information processing systems 31 (2018).

[2] Barboni, Raphaël, Gabriel Peyré, and François-Xavier Vialard. "On global convergence of ResNets: From finite to infinite width using linear parameterization." Advances in Neural Information Processing Systems 35 (2022)

[3] Sander, Michael, Pierre Ablin, and Gabriel Peyré. "Do Residual Neural Networks discretize Neural Ordinary Differential Equations?." Advances in Neural Information Processing Systems 35 (2022)

 $x^{l+1} = x^l + f^l_{\theta^l}(x^l)$

A bestiary of transforms for each application

In vision and audio signal processing: convolutions

Stacking them gives deep convolutional networks (CNNs)

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

A bestiary of transforms for each application

 In text processing: recurrent neural networks to encode the recurrent nature of language.

Transformers: an all-purpose architecture? *How does chat-GPT works?*

Transformers are used everywhere

- Most widely used architectures for computer vision: Transformers
- Most widely used architectures for text processing: Transformers
- Most widely used architecture for audio processing: Transformers
- Chat-GPT built upon GPT: Generative Pretraining Transformers

How can we have the same architecture for all these different modalities?

Transformers are sequence-to-sequence mappings

- The input to a transformer is not a single vector x but a sequence of vectors $X = (x_1, ..., x_n)$ where each x_i is in \mathbb{R}^d
- It outputs a sequence of same length $Y = (y_1, ..., y_n)$ where each y_i is in \mathbb{R}^d
- It processes sequences of arbitrary length: n can change from input to input.

Transformers from scratch

- How to turn an input into a sequence of vectors?
- This process is called tokenization. It depends on the input space.

Text tokenizer

From <u>https://platform.openai.com/tokenizer</u>

My nan	me is Pierre.			
				Q
Clear	Show example			
Tokens 5	Characters 18			
My nan	ne is Pierre. Token IDs			
[5159,	, 836, 374, 38077,	13]		
Text	Token IDs			

My name is Théo.	
	Q
Clear Show example	
Tokens Characters 6 16	
My name is Théo.	
[5159, 836, 374, 666, 89577, 13] Text Token IDs	

Text tokenizer

[5159, 836, 374, 38077, 13] Text Token IDs	
Text Token IDs	
Text Token IDs	
Text Token IDs	
Text Tokenios	

- Each token ID is then mapped to a high dimensional vector. The mapping is learned (it is part of the parameters of the transformer θ).
- There is one learned vector for each token id in the vocabulary.

Image tokenizer

Positional encoding

- At this point in the process, ordering of the vectors is crucial.
- Positional encoding encodes the position of the vectors into the vectors themselves.

- Simple solution: append a coordinate: $y_i = [x_i, i]$
- In practice, more complicated methods are used

So far...

- the ordering does not matter.
- The transformer is then composed of two repeated simple operations.

• We have transformed an input (image or text) into a sequence of vectors for which

The two core building blocks: MLPs and Attention

Individual MLPs

• Each vector x_i is in \mathbb{R}^d . We use an MLP that acts on each vector individually:

$f_{\theta}((x_1, \dots, x_n)) = (MLP_{\theta}(x_1), \dots, MLP_{\theta}(x_n))$

Vector interactions with attention

 The most important function in a Transformer is Attention. $(y_1, ..., y_n) = Attn((x_1, ..., x_n))$

- It makes vectors interact with each other: y_i depends on all the other x_i .
- Parameterized by three matrices $\theta = (W_O, W_K, W_V) \in \mathbb{R}^{d \times d}$

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Attention

- Parameterized by three matrices $\theta = (W_O, W_K, W_V) \in \mathbb{R}^{d \times d}$
- Compute the queries, keys and values

$$q_i = W_Q x_i, k_i =$$

The i-th output vector y_i is a convex combination of the values:

$$y_i = \sum_{j=1}^n w_{ij} v_j, \text{ with } w_{ij} > 0 \text{ and } \sum_j w_{ij} = 1$$

• Weights depend on the alignement between the query q_i and all the keys k_i :

$$w_{ij} = \operatorname{softmax}((\langle q_i, k_j \rangle))$$

 $W_K x_i$, and $v_i = W_V x_i$

 $k_{j}\rangle))_{j} := \frac{\exp(\langle q_{i}, k_{j}\rangle)}{\sum_{l=1}^{n} \exp(\langle q_{i}, k_{l}\rangle)}$

Attention: intuition

- The coefficient w_{ij} is large when q_i and k_j are well aligned.
- Allows to focus on important links between tokens

lt		lt
	is	is
	in	in
	this	this
	spirit	spirit
	that	that
	а	а
	majority	majority
	of	of
	American	American
	governments	government
	have	have
	passed	passed
new		new
laws		laws
since		since
2009		2009
	ma <mark>kin</mark> g	making
	the	the
	registration	registration
	or	or
	voting	voting
process		process
	more	more
	difficult	difficult
	· ·	-
	<eos></eos>	<eos></eos>
		_

Full transformer architecture

Stack Attention and MLPs, using residual connections

Z = X + Attn(X)Y = Z + MLP(Z)

Input (prompt)

The subtle bits: normalization layers

- There are also normalization layers. Simplest one is called RMSNorm.
- Acts on vectors individually.
- Trainable parameters $\beta \in \mathbb{R}^d$

Projects the vectors on an ellipsis.

 $Norm((x_1, ..., x_n)) = (y_1, ..., y_n)$

$$y_i = \beta \odot \frac{x_i}{\|x_i\|}$$

Z = X + Attn(Norm(X))Y = Z + MLP(Norm(Z))

The subtle bits: multi-head attention

- Attention is not flexible enough; can between vectors.
- Multi-head attention: use multiple at them
 - MultiAttn(X

Attention is not flexible enough; can only focus on one specific interaction

Multi-head attention: use multiple attention layers in parallel, and then aggregate

$$K) = \sum_{l=1}^{h} \operatorname{Attn}^{l}(X)$$

Z = X + MultiAttn(Norm(X))Y = Z + MLP(Norm(Z))

The subtle bits: multi-head attention

Head 1

Head 2

Attention: a measure-to-measure map

Attention

- Parameterized by three matrices $\theta = (W_O, W_K, W_V) \in \mathbb{R}^{d \times d}$
- Compute the queries, keys and values

$$q_i = W_Q x_i, k_i =$$

The i-th output vector y_i is a convex combination of the values:

$$y_i = \sum_{j=1}^n w_{ij} v_j, \text{ with } w_{ij} > 0 \text{ and } \sum_j w_{ij} = 1$$

$$w_{ij} = \operatorname{softmax}((\langle q_i, k_j \rangle))$$

 $W_K x_i$, and $v_i = W_V x_i$

• Weights depend on the alignement between the query q_i and all the keys k_i : $k_{j}\rangle))_{j} := \frac{\exp(\langle q_{i}, k_{j}\rangle)}{\sum_{l=1}^{n} \exp(\langle q_{i}, k_{l}\rangle)}$

Key insight: Attention is equivariant w.r.t. permutations

 $Attn(x_1, ..., x_n) = (y_1, ..., y_n)$

• For σ a permutation from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$:

$$\operatorname{Attn}(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

- Same for the MLP and Normalization
- The whole transformer architecture, apart from the initial positional encoding, is permutation-equivariant!

 $\sigma(n) = (y_{\sigma(1)}, \dots, y_{\sigma(n)})$

Extending attention to measures

$$Attn(x_1, ..., x_n) = (y_1, ..., y_n)$$

• Define the measure map for $\mu \in \mathscr{P}(\mathbb{R})$

We have
$$y_i = \Gamma_{\mu}(x_i)$$
 with $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$

Sander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers with doubly stochastic attention." In International Conference on Artificial Intelligence and Statistics, pp. 3515-3530. PMLR, 2022.

$$y_i = \frac{\sum_{j=1}^{n} \exp(x_i^T W_Q^T W_K^T x_j) W_V x_j}{\sum_{j=1}^{n} \exp(x_i^T W_Q^T W_K^T x_j)}$$

$$\mathbb{R}^d): \quad \Gamma_{\mu}(x) = \frac{\int \exp(x^T W_Q^T W_K^T z) W_V z d\mu(z)}{\int \exp(x^T W_Q^T W_K^T z) d\mu(z)}$$

Extension: $Attn(\mu) = (\Gamma_{\mu})_{\#}\mu$

Attention + Neural ODE = Continuity equation

Residual attention

$$(y_1, \dots, y_n) = (x_1, \dots, x_n) + \operatorname{Attn}(x_1, \dots, x_n)$$

• Euler discretization of the ODE $\dot{x}_i = \Gamma_\mu(x_i)$

$$\Gamma_\mu(x) = \frac{\int \exp(x^T W_Q^T W_K^T z) W_V z d\mu}{\int \exp(x^T W_Q^T W_K^T z) d\mu(z)}$$

- Equivalent to the continuity equation:
- Can then be used to study theoretical properties of transformers
- Normalization in the attention makes existence of solution non trivial / interesting

Sander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers with doubly stochastic attention." In International Conference on Artificial Intelligence and Statistics, pp. 3515-3530. PMLR, 2022.

$\partial_t \mu + \operatorname{div}(\mu \Gamma_{\mu}) = 0$

Geshkovski, Borjan, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. "The emergence of clusters in self-attention dynamics." Advances in Neural Information Processing Systems 36 (2024).

Lipschitz constant of attention

Why do we care about Lipschitz constants?

Robustness to adversarial attacks

large change in the output:

 $+.007 \times$

"panda"

57.7% confidence

An adversarial attack is a small perturbation to the input of a network that leads to

δ such that $||f_{\theta}(x+\delta) - f(x)|| \gg \delta$, with $||\delta|| \ll 1$

noise

99.3% confidence

Robustness to adversarial attacks (contd.)

If a network is Lipschitz, we know that by definition

$$\|f_{\theta}(x+\delta)$$
 -

Hence, the network is hard to attack.

Lipschitzness certifies robustness

- only about local Lipschitz constant on the manifold.
- Hard to compute, hard to control.

$$\|f(x)\| \le L_f \|\delta\|$$

• In most cases, we only care about perturbation of x in the "data manifold": care

Building invertible neural networks

- **Theorem:** If $f : \mathbb{R}^p \to \mathbb{R}^p$ is L-Lipschitz with L < 1 then $x \mapsto x + f(x)$ is invertible, i.e. for any y the equation y = x + f(x) has one and only one solution.
- To invert the map, simply iterate $x_{n+1} = y f(x_n)$
- Hence, if we having <1 Lipschitz building blocks, we can design residual networks that are invertible by design.
- Invertible networks usecases:
- 1. Generative modeling (normalizing flows)
- 2.Memory-efficient backprop (no need to store activations)

Behrmann, Jens, et al. "Invertible residual networks." International conference on machine learning. PMLR, 2019.

Global Lipschitz constant of attention?

- We need to find an input sequence (x_1, \ldots, x_n) and small displacements possible.
- Simplify things: assume $W_O = W_K =$
- In this simple case: Attn $(x_1, \ldots, x_n)_i =$

any non-constant function σ .

 (d_1, \ldots, d_n) such that $Att(x_1 + d_1, \ldots, x_n + d_n)$ is as far from $Att(x_1, \ldots, x_n)$ as

$$W_{V} = I, \text{ and dim} =$$

$$\sum_{j=1}^{n} \exp(x_{i}x_{j})x_{j}$$

$$\sum_{j=1}^{n} \exp(x_{i}x_{j})$$

Problem: product interaction. The function $\phi(x, y) = \sigma(xy)$ is not Lipschitz for

What if inputs are bounded?

Estimate $L(n, R) = \sup \|Jac(Attn)(x_1, ..., x_n))\|_2$ with B(R) ball of radius R $x_1, \ldots, x_n \in \overline{B(R)}$

Castin, Valérie, Pierre Ablin, and Gabriel Peyré. "Understanding the Regularity of Self-Attention with Optimal Transport." arXiv preprint arXiv:2312.14820 (2023).

Large n limit

Estimate $L(n, R) = \sup ||Jac(Attn)(x_1, ..., x_n))||_2$ $x_1,\ldots,x_n \in B(R)$

with B(R) ball of radius R

- Catastrophic scaling in the limit $n \to \infty$: $L(n, R) \simeq_{n \to +\infty} R^2 \exp(R^2)$
- Intuition: take in 1d $\mu = \exp(-R^2)\delta_R + (1 \exp(-R^2))\delta_{-R}$
- With a fixed number of vectors n, need $n \simeq \exp(R^2)$ to achieve this bound

Generic bound

Estimate $L(n, R) = ||\operatorname{Sup}|| ||\operatorname{Jac}(\operatorname{Attn})(x_1, \dots, x_n))||_2$ $\overline{x_1,\ldots,x_n} \in \overline{B(R)}$

with B(R) ball of radius R

- Generic bound : $L(n, R) \leq \sqrt{nR^2}$
- Tight when $n \simeq \exp(R^2)$

Large R limit

- Large radius regime: $\lim ||Jac(Attn)(Rx_1, ..., Rx_n))||_2 \le \sqrt{n}$ $R \rightarrow +\infty$
- This is observed in practice!

Experiment

- Take sentences from Alice in Wonderland, and look at local Lipschitz constant when going through a trained transformer. Vary the sequence length.
- Local Lipschitz constant estimated with power method

Experiment

Bert model, layer 0

Bert model, layer 6

GPT2 model, layer 6

Conclusion

- Transformers are an all-purpose architecture used everywhere
- It takes as input sequences of vectors
- Apart from the initial positional encoding, it is permutation-equivariant, thus can be seen as acting on measures
- The corresponding continuity equation is interesting and non-standard
 The study of the regularity of the transformer leads to different surprising
- The study of the regularity of the transformer

Thanks.