
Pierre Ablin
Joint work with Valérie Castin, Michael Sander and Gabriel Peyré

Transformers, Dynamical Systems
and Optimal Transport.

Neural networks

Neural networks

•Neural networks are parameterized functions from an input space (text, images,
sounds) to an output space (vector space, text, …)

fθ(x)

Parameters Inputs

•Parameters live in a vector space. The way the parameters define the transform
 is called the network’s architecture.

θ
f

Neural networks as a chain of simple transforms

•To build a complicated function , we chain simpler transformsfθ

x0 = x
xl+1 = f l

θl(xl)

fθ(x) = xL, θ = (θ0, …, θL−1)

where each is a simple functionf l
θl

The simplest transform: Multi-Layer-Perceptron (MLP)

•A MLP is a map from to parameterized by , where
are matrices and are vectors. The hidden dimension is .

ℝd ℝp θ = (W1, W2, b1, b2) Wi
bi h = dim(b1)

fθ(x) = W2σ(W1x + b1) + b2

•The element-wise function is a Rectified Linear Unit (ReLU):

•These functions are universal approximators [Cybenko 89]: any continuous
function on a compact can be approximated by :

σ σ(u) = max(u,0)

fθ
∀f, ε > 0,∃h, θ such that ∥f − fθ∥∞ ≤ ε

Going deep with residual connections
• Iterating only MLPs leads to instability:

training becomes harder and harder with
depth.

•Residual connections is a simple way to
facilitate training

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

• Intuition: it is easy to learn to do
nothing: simply take , the
layer has no effect.

θl = 0 xl+1 = xl + f l
θl(xl)

xl+1 = f l
θl(xl)

Link with dynamical systems
xl+1 = xl + f l

θl(xl)

• If the functions are all the same, this is an Euler discretization (with step 1) of the
ordinary differential equation:

f l

dx
dt

= fθ(t)(x(t))

•Makes a parallel between deep residual
networks and dynamical systems

•Precise link between the two studied in [2, 3]
[1] Chen, Ricky TQ, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. "Neural ordinary differential
equations." Advances in neural information processing systems 31 (2018).

[2] Barboni, Raphaël, Gabriel Peyré, and François-Xavier Vialard. "On global convergence of ResNets: From finite
to infinite width using linear parameterization." Advances in Neural Information Processing Systems 35 (2022)

[3] Sander, Michael, Pierre Ablin, and Gabriel Peyré. "Do Residual Neural Networks discretize Neural Ordinary
Differential Equations?." Advances in Neural Information Processing Systems 35 (2022)

A bestiary of transforms for each application

• In vision and audio signal processing: convolutions

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

•Stacking them gives deep
convolutional networks (CNNs)

A bestiary of transforms for each application

• In text processing: recurrent neural networks to
encode the recurrent nature of language.

Sepp Hochreiter, Jürgen Schmidhuber, “Long short-term memory”, 1997

Transformers: an all-purpose
architecture?
How does chat-GPT works?

Transformers are used everywhere

•Most widely used architectures for computer vision: Transformers
•Most widely used architectures for text processing: Transformers
•Most widely used architecture for audio processing: Transformers
•Chat-GPT built upon GPT: Generative Pretraining Transformers

How can we have the same architecture
for all these different modalities?

Transformers are sequence-to-sequence mappings

•The input to a transformer is not a single vector but a sequence of vectors
 where each is in

• It outputs a sequence of same length where each is in

• It processes sequences of arbitrary length: can change from input to input.

x
X = (x1, …, xn) xi ℝd

Y = (y1, …, yn) yi ℝd

n

Transformer

x1 x2 x3 x4 y1 y2 y3 y4

Transformers from scratch

•How to turn an input into a sequence of vectors?
•This process is called tokenization. It depends on the input space.

Text tokenizer
•From https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

Text tokenizer

•Each token ID is then mapped to a high dimensional vector. The mapping is
learned (it is part of the parameters of the transformer).

•There is one learned vector for each token id in the vocabulary.

θ

x1 x2 x3 x4 x5

Image tokenizer x1 x2 x3 x4 x5 x6 x7 x8 x9

Flatten patches

Positional encoding

•At this point in the process, ordering of the vectors is crucial.
•Positional encoding encodes the position of the vectors into the vectors

themselves.

x1 x2 x3 x4

Ordering matters

y1 y2 y3 y4

Ordering can be recovered
by looking at vector only

• Simple solution: append a
coordinate:

• In practice, more complicated
methods are used

yi = [xi, i]

So far…

•We have transformed an input (image or text) into a sequence of vectors for which
the ordering does not matter.

•The transformer is then composed of two repeated simple operations.

x1 x2 x3 x4

The two core building blocks: MLPs
and Attention

Individual MLPs

•Each vector is in We use an MLP that acts on each vector individually:xi ℝd .

x1 x2 x3 x4

fθ((x1, …, xn)) = (MLPθ(x1), …, MLPθ(xn))

Vector interactions with attention

•The most important function in a Transformer is Attention.

(y1, …, yn) = Attn((x1, …, xn))

• It makes vectors interact with each other: depends on all the other .yi xj

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d

Attention

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d

•Compute the queries, keys and values

qi = WQxi, ki = WKxi, and vi = WVxi

•The i-th output vector is a convex combination of the values:yi

yi =
n

∑
j=1

wijvj, with wij > 0 and ∑
j

wij = 1

•Weights depend on the alignement between the query and all the keys :qi kj

wij = softmax((⟨qi, kj⟩))j :=
exp(⟨qi, kj⟩)

∑n
l=1 exp(⟨qi, kl⟩)

Attention: intuition

•The coefficient is large when and are
well aligned.

wij qi kj

•Allows to focus on
important links between
tokens

Full transformer architecture

•Stack Attention and MLPs, using residual connections

Z = X + Attn(X)

Y = Z + MLP(Z)

The subtle bits: normalization layers

•There are also normalization layers. Simplest one is called RMSNorm.
•Acts on vectors individually.

•Trainable parameters β ∈ ℝd

Norm((x1, …, xn)) = (y1, …, yn)

yi = β ⊙
xi

∥xi∥

•Projects the vectors on an ellipsis. Z = X + Attn(Norm(X))

Y = Z + MLP(Norm(Z))

The subtle bits: multi-head attention

•Attention is not flexible enough; can only focus on one specific interaction
between vectors.

•Multi-head attention: use multiple attention layers in parallel, and then aggregate
them

MultiAttn(X) =
h

∑
l=1

Attnl(X)

Z = X + MultiAttn(Norm(X))

Y = Z + MLP(Norm(Z))

The subtle bits: multi-head attention

MultiAttn(X) =
h

∑
l=1

Attnl(X)Head 1 Head 2

Attention: a measure-to-measure map

Attention

•Parameterized by three matrices θ = (WQ, WK, WV) ∈ ℝd×d

•Compute the queries, keys and values

qi = WQxi, ki = WKxi, and vi = WVxi

•The i-th output vector is a convex combination of the values:yi

yi =
n

∑
j=1

wijvj, with wij > 0 and ∑
j

wij = 1

•Weights depend on the alignement between the query and all the keys :qi kj

wij = softmax((⟨qi, kj⟩))j :=
exp(⟨qi, kj⟩)

∑n
l=1 exp(⟨qi, kl⟩)

Key insight: Attention is equivariant w.r.t. permutations

•For a permutation from to :σ {1,…, n} {1,…, n}

Attn(x1, …, xn) = (y1, …, yn)

Attn(xσ(1), …, xσ(n)) = (yσ(1), …, yσ(n))
•Same for the MLP and Normalization
•The whole transformer architecture, apart from the initial positional

encoding, is permutation-equivariant!

Extending attention to measures

Attn(x1, …, xn) = (y1, …, yn) yi =
∑n

j=1 exp(xT
i WT

QWT
K xj)WVxj

∑n
j=1 exp(xT

i WT
QWT

Kxj)

Γμ(x) =
∫ exp(xTWT

QWT
Kz)WVzdμ(z)

∫ exp(xTWT
QWT

Kz)dμ(z)
•Define the measure map for :μ ∈ 𝒫(ℝd)

We have with yi = Γμ(xi) μ =
1
n

n

∑
i=1

δxi

Extension:
Attn(μ) = (Γμ)#μSander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers

with doubly stochastic attention." In International Conference on Artificial Intelligence and
Statistics, pp. 3515-3530. PMLR, 2022.

Attention + Neural ODE =
Continuity equation

Residual attention

(y1, …, yn) = (x1, …, xn) + Attn(x1, …, xn)

•Equivalent to the continuity equation: ∂tμ + div(μΓμ) = 0

Sander, Michael E., Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. "Sinkformers: Transformers
with doubly stochastic attention." In International Conference on Artificial Intelligence and
Statistics, pp. 3515-3530. PMLR, 2022.

•Can then be used to study theoretical properties of transformers
•Normalization in the attention makes existence of solution non trivial /

interesting

•Euler discretization of the ODE ·xi = Γμ(xi)
Γμ(x) =

∫ exp(xTWT
QWT

Kz)WVzdμ(z)

∫ exp(xTWT
QWT

Kz)dμ(z)

Geshkovski, Borjan, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. "The emergence of
clusters in self-attention dynamics." Advances in Neural Information Processing Systems 36
(2024).

Lipschitz constant of attention

Why do we care about Lipschitz
constants?

Robustness to adversarial attacks

•An adversarial attack is a small perturbation to the input of a network that leads to
large change in the output:

<latexit sha1_base64="nPtQZJRFq3J7+Iv5qWgYVFOYPyM=">AAACT3icbVHLThtBEJw1JIDzwMAxlxZWJKMk1m4UHkdELjmChAHJa1m9417viNmHZnoTW4v/kEtyy2/kkkOiKGN7kQikpJFKVdXzqIkKrSz7/nevsbL65Ona+kbz2fMXLzdbW9sXNi+NpJ7MdW6uIrSkVUY9VqzpqjCEaaTpMrr+OPcvP5OxKs/OeVrQIMVxpmIlkZ00bMXhiDQjhEwTrsCWMgFOkGEG4U08rEJOiHHWmbyBZXIP3kHcmew5G8LxuFbf3m3wRXGymF3q85DWEAxbbb/rLwCPSVCTtqhxOmx9C0e5LFPKWGq0th/4BQ8qNKykplkzLC0VKK9xTH1HM0zJDqpFHzN47ZQRxLlxK2NYqPcnKkytnaaRS6bIiX3ozcX/ef2S46NBpbKiZMrk8qC41MA5zMuFkTIkWU8dQWmUuyvIBA1Kdl/QdCUED5/8mFy87wYH3f2zD+3jk7qOdfFK7IqOCMShOBafxKnoCSluxQ/xS/z2vno/vT+NOtrwarIj/kFj4y95Z7JX</latexit>

� such that kf✓(x+ �)� f(x)k � �, with k�k ⌧ 1

Robustness to adversarial attacks (contd.)
• If a network is Lipschitz, we know that by definition

Hence, the network is hard to attack.

Lipschitzness certifies robustness

<latexit sha1_base64="7g8yq4J2vv0xORI3wuj3KwcyN60=">AAACHXicbVDJSgNBEO1xN25Rj14agxARw4y4HUUvHjwoGBXSYejp1JgmPYvdNWKY5Ee8+CtePCjiwYv4N3aWg9uDgsd7VVTVC1IlDbrupzMyOjY+MTk1XZiZnZtfKC4uXZgk0wKqIlGJvgq4ASVjqKJEBVepBh4FCi6D1lHPv7wFbWQSn2M7hXrEr2MZSsHRSn5xm3VCP2fYBOTd8t0GZQ1QyNfpJg3Ld+uUdShTcENP/JB1Bh7r+MWSW3H7oH+JNyQlMsSpX3xnjURkEcQoFDem5rkp1nOuUQoF3QLLDKRctPg11CyNeQSmnve/69I1qzRomGhbMdK++n0i55Ex7SiwnRHHpvnt9cT/vFqG4X49l3GaIcRisCjMFMWE9qKiDalBoGpbwoWW9lYqmlxzgTbQgg3B+/3yX3KxVfF2Kztn26WDw2EcU2SFrJIy8cgeOSDH5JRUiSD35JE8kxfnwXlyXp23QeuIM5xZJj/gfHwBUzig1w==</latexit>

kf✓(x+ �)� f(x)k  Lfk�k

• In most cases, we only care about perturbation of in the “data manifold”: care
only about local Lipschitz constant on the manifold.

•Hard to compute, hard to control.

x

Cisse, Moustapha, et al. "Parseval networks: Improving robustness to adversarial examples." International conference on machine learning. PMLR, 2017.

Building invertible neural networks

•Theorem: If is L-Lipschitz with then is
invertible, i.e. for any the equation has one and only one solution.

f : ℝp → ℝp L < 1 x ↦ x + f(x)
y y = x + f(x)

•To invert the map, simply iterate xn+1 = y − f(xn)

Behrmann, Jens, et al. "Invertible residual networks." International conference on machine learning. PMLR, 2019.

•Hence, if we having <1 Lipschitz building blocks, we can design residual networks
that are invertible by design.

•Invertible networks usecases:

1. Generative modeling (normalizing flows)

2.Memory-efficient backprop (no need to store activations)

Global Lipschitz constant of attention ?

•We need to find an input sequence and small displacements
 such that is as far from as

possible.

•Simplify things: assume , and dim = 1

In this simple case:

(x1, …, xn)
(d1, …, dn) Att(x1 + d1, …, xn + dn) Att(x1, …xn)

WQ = WK = WV = I

Attn(x1, …, xn)i =
∑n

j=1 exp(xixj)xj

∑n
j=1 exp(xixj)

Problem: product interaction. The function is not Lipschitz for
any non-constant function .

ϕ(x, y) = σ(xy)
σ

What if inputs are bounded?

Estimate with ball of radius L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2 B(R) R

Castin, Valérie, Pierre Ablin, and Gabriel Peyré. "Understanding the Regularity of Self-Attention
with Optimal Transport." arXiv preprint arXiv:2312.14820 (2023).

Large n limit

Estimate

with ball of radius

L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2

B(R) R

•Catastrophic scaling in the limit :

• Intuition: take in 1d

•With a fixed number of vectors , need to achieve this bound

n → ∞ L(n, R) ≃n→+∞ R2 exp(R2)

μ = exp(−R2)δR + (1 − exp(−R2))δ−R

n n ≃ exp(R2)

Generic bound

Estimate

with ball of radius

L(n, R) = sup
x1,…,xn∈B(R)

∥Jac(Attn)(x1, …, xn))∥2

B(R) R

•Generic bound :

•Tight when

L(n, R) ≤ nR2

n ≃ exp(R2)

Large R limit

•Large radius regime:

•This is observed in practice!

lim
R→+∞

∥Jac(Attn)(Rx1, …, Rxn))∥2 ≤ n

Experiment

•Take sentences from Alice in Wonderland, and look at local Lipschitz
constant when going through a trained transformer. Vary the sequence
length.

•Local Lipschitz constant estimated with power method

Experiment
Bert model, layer 0 Bert model, layer 6 GPT2 model, layer 6

Conclusion

•Transformers are an all-purpose architecture used everywhere
• It takes as input sequences of vectors
•Apart from the initial positional encoding, it is permutation-equivariant, thus

can be seen as acting on measures
•The corresponding continuity equation is interesting and non-standard
•The study of the regularity of the transformer leads to different surprising

regimes

Thanks !

