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Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions
are being automated:

▶ bank loans,

▶ job pre-screenings,

▶ school admissions,

▶ criminal sentencings,

▶ etc.

Claim: The increasing automation of decision-making procedures critically
increases the risk of simultaneously automatising discriminations.

Let us see some concrete examples in the next slides.
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Is Amazon sexist?



4/29

Is Google Translate sexist?

Source: Rozsa Melinda https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/

https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/
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How to formalize fairness?

Data: (feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × Y.

Predictions: f : Z → Y
▶ Fairness through awareness: Z = X × S (disparate treatment);

▶ Fairness through UNawareness: Z = X (legal reasons: regulations).

A popular formalization of fairness is Demographic Parity (DP). We say
that a prediction rule f : Z → Y satisfies DP if

f(Z) ⊥⊥ S .

In the case of binary classification Y = {0, 1} and binary sensitive attribute
S = {0, 1}, it amounts to

P(f(X,S) = 1 | S = 0) = P(f(X,S) = 1 | S = 1) .

NB: Other formalizations of fairness exist, there is no “best one”.
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Popular definitions of fair classifiers
▶ Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

P(f(Z) = 1 | S = 0) = P(f(Z) = 1 | S = 1)

1. Prediction rate is the same for two groups.
2. Random variable f(Z) is independent from S.
3. DP (not differential privacy!) cares only about X|S.

▶ Equalized Odds (M. Hardt, Price, and Srebro, 2016)

P(f(Z) = y | Y = y, S = 0) = P(f(Z) = y | Y = y, S = 1) ∀y ∈ {0, 1}
1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

▶ Equal Opportunity (M. Hardt, Price, and Srebro, 2016)

P(f(Z) = 1 | Y = 1, S = 0) = P(f(Z) = 1 | Y = 1, S = 1)

1. Equal True Positive rates.
2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) = 1) is

given with the same probability for any sensitive attribute.

Question: Which one(s) should we enforce?
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Incompatibility of fairness constraints1

1. f(Z) ⊥⊥ S - independence (DP, Statistical Parity)

2. (f(Z) ⊥⊥ S) | Y - separation (Equal Odds, Equal Opportunity)

3. (Y ⊥⊥ S) | f(Z) - sufficiency (Test fairness)

Proposition

If Y ∈ {0, 1}, S ⊥̸⊥ Y , and f(Z)⊥̸⊥ Y , then independence and separation
cannot hold simultaneously.

Similarly, separation cannot hold simultaneously as suff./sep. in general.

Consequences: need to choose one notion of fairness (or relax?).

1Taken from Chapter 2 of (Barocas, Moritz Hardt, and Narayanan, 2019).
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Some personal contributions on
the Demographic Parity

constraint
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The cost of fairness/Demographic Parity

▶ Many works empirically studied the impact of (relaxed) fairness
constraints on the risk (Bertsimas, Farias, and Trichakis, 2012; Zliobaite, 2015;

Kleinberg, Mullainathan, and Raghavan, 2016; Zafar et al., 2017; Haas, 2019;

Wick, Tristan, et al., 2019).

▶ Yet, the problem of mathematically/statistically quantifying the effect
of such constraints on the risk had not been tackled.
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Optimal transport and the Wasserstein-2 metric

Define, for µ, ν ∈ P2(Rd),

W2
2(µ, ν) := inf

{
E(X,Y )∥X − Y ∥22 : X ∼ µ,Y ∼ ν

}
.

▶ Metric on P2(Rd).

▶ Highly flexible/handy.

▶ Nice geometric features.

(X, Y ) ∼ γ

X ∼ µ

Y ∼ ν

Figure: Transport plan illustration
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Squared-loss regression under relaxed DP
(feature︸ ︷︷ ︸

X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × R.

1. Predictions: f : X × S → R.

2. Risk: R(f) := E(Y − f(X, S))2, min. by f∗(x, s) := E[Y |X=x, S=s]).

3. Relaxed Demographic parity: U(f) ≤ αU(f∗), where 0 ≤ α ≤ 1 and

U(f) = min
ν

∑
s∈S

wsW
2
2(Law(f(X, S)|S = s), ν) ∈ [0,+∞).

♣ U(f) = 0 if and only if f satisfies DP.

α-Relative Improvement: f∗
α ∈ argmin {R(f) : U(f) ≤ αU(f∗)}

Question: What is the price –in risk– of considering fair predictors?
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Unfairness through Wasserstein barycenters

U(f) = min
ν

∑
s∈S

wsW
2
2(Law(f(X, S)|S = s), ν).
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Main assumption

Assumption (A)

The group-wise prediction distributions Law(f∗(X, S) | S = s) have finite
second moment and are non-atomic for any s in S.
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Improving unfairness oracles

α-Relative Improvement f∗
α ∈ argmin

{
R(f) : U(f) ≤ αU(f∗)

}

Theorem

Under Assumption (A), for all α ∈ [0, 1] it holds that

f∗
α ≡ √

αf∗
1 + (1−√

α)f∗
0 .

(Evgenii Chzhen and Schreuder, 2022)

Theorem

Under Assumption (A),

Law(f∗
0 (X, S)) = argmin

ν

∑
s∈S

wsW
2
2 (Law(f∗(X, S) | S = s), ν) ,

f∗
0 (x, s) =

(∑
s′∈S

ws′F
−1
f∗|S=s′

)
◦ Ff∗|S=s ◦ f∗(x, s) ,

where ws = P(S=s), Ff∗|S=s(t) = P(f∗(X, S)≤t|S=s).

Chzhen, Denis, Hebiri et al. (2020); Le Gouic et al. (2020)
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Key ingredient for the proof

Abstract geometric lemma

Let (X , d) be a metric space in which barycenters are well-defined. Let
a = (a1, . . . , aK) ∈ XK , w = (w1, . . . , wK)⊤ ∈ ∆K−1 and let Ca be a
barycenter of a with respect to weights w. For a fixed α ∈ [0, 1] assume
that there exists b = (b1, . . . , bK) ∈ XK which satisfies

d(as, Ca) = d(as, bs) + d(bs, Ca) , s = 1, . . . ,K , (P1)

d(bs, as) = (1−√
α)d(as, Ca) , s = 1, . . . ,K . (P2)

Then, b is a solution of

inf
b∈XK

{
K∑
s=1

wsd
2(bs, as) :

K∑
s=1

wsd
2(bs, Cb) ≤ α

K∑
s=1

wsd
2(as, Ca)

}
.
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Key ingredient for the proof

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.75

Ca

1−√α

√
α

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.5

Ca

1−√α

√
α

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.25

Ca

1−√α

√
α

Figure: Illustration of the abstract geometric lemma for (X , d) = (R2, ∥ · ∥2) and
α ∈ {0.25, 0.5, 0.75}. The initial points a1, a2, a3 are the vertices of an isosceles
triangle. The weights are set as follows: w1 = 0.1, w2 = 0.4 and w3 = 0.5.
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What is (exact) fair regression?

f∗(x, 1) f∗(x̄, 2)

Fair optimal prediction f ∗0 with w1 = 2/5 and w2 = 3/5

Law of f∗|S=1

Law of f∗|S=2

f∗(x, 1) f∗0 (x, 1)=f∗0 (x̄, 2) f∗(x̄, 2)

Law of f∗|S=1

Law of f∗|S=2

Law of f∗0

f∗
0 (x, s) =

( ∑
s′∈S

ws′F
−1
f∗|S=s′

)
◦ Ff∗|S=s ◦ f∗(x, s)
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What is (exact) fair regression?

f∗(x, 1) f∗(x̄, 2)

Fair optimal prediction f ∗0 with w1 = 2/5 and w2 = 3/5

Law of f∗|S=1

Law of f∗|S=2

f∗(x, 1) f∗0 (x, 1)=f∗0 (x̄, 2) f∗(x̄, 2)

Law of f∗|S=1

Law of f∗|S=2

Law of f∗0

f∗
0 (x, s) =

( ∑
s′∈S

ws′F
−1
f∗|S=s′

)
◦ Ff∗|S=s ◦ f∗(x, s)
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Risk/fairness trade-off

α-Relative Improvement f∗
α ∈ argmin

{
R(f) : U(f) ≤ αU(f∗)

}

Proposition

Under Assumption (A), for all α ∈ [0, 1] it holds that

R(f∗
α) = (1−√

α)2 U(f∗) and U(f∗
α) = α U(f∗) .

(Evgenii Chzhen and Schreuder, 2022)
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Minimax statistical framework

Data: (X1, S1, Y1), . . . , (Xn, Sn, Yn)
i.i.d.∼ P(f∗,θ), (f

∗,θ) ∈ F ×Θ
Given α ∈ [0, 1] and t > 0, the goal of the statistician is to construct an

estimator f̂ , which simultaneously satisfies

1. Uniform fairness guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)

(
U(f̂) ≤ αU(f∗)

)
≥ 1− t ,

2. Uniform risk guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)

(
R(f̂) ≤ rn,α,f∗(F ,Θ, t)

)
≥ 1− t .
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Application to linear model with systematic bias

Linear regression with systematic group-dependent bias model:

Yi =
〈
Xi, β̄

∗〉+ b∗Si
+ σξi, i = 1, . . . , n ,

where {ξi}ni=1
i.i.d.∼ N (0, 1) ⊥⊥ {Xi}ni=1

i.i.d.∼ N (0,Σ) ⊥⊥ {Si}ni=1.
We assume that σ is known and Σ > 0.

We propose an estimator f̂ which, with probability at least 1− δ, satisfies
U(f̂) ≤ αU(f∗) and achieves the minimax optimal rate

R(f̂) ≍
{
σ2

(
p+K

n
+

log(1/δ)

n

)}∨{
(1−√

α)2U(f∗)

}
.

Recently, (Fukuchi and Sakuma, 2022) proposed an extension of our model to
allow correlations between X and S.
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Proposed estimator (1/2)

Oracle α-RI

Under the considered model it holds that

f∗
α(x, s) =

〈
x, β̄∗〉+√

αb∗s + (1−√
α)

K∑
s=1

wsb
∗
s, ∀α ∈ [0, 1] .

Plug-in estimated parameters

(β̂, b̂) ∈ argmin
(β̄,b)∈Rp×RK

K∑
s=1

ws

∥∥Y s −Xsβ̄ − bs1ns

∥∥2
ns

.

to get a family of linear estimators

f̂τ (x, s) = ⟨x, β̂⟩+√
τ b̂s + (1−√

τ)

K∑
s=1

wsb̂s, (x, s) ∈ Rp × [K] .
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Proposed estimator (2/2)

Define

δn := δn(p,K, t) = 8

(
p

n
+

K

n

)
+ 16

(√
p

n
+

√
K

n

)√
t

n
+

32t

n
.

Upper bound theorem

Let α ∈ [0, 1]. For n “large enough”, setting

τ̂ = α

(
1 +

σδ
1/2
n

U1/2(f̂1)− σδ
1/2
n

)−2

1
(
U1/2(f̂1) > σδ

1/2
n

)
,

it holds with probability at least 1− 4e−t/2 that

U(f̂τ̂ ) ≤ αU(f∗) and R1/2(f̂τ̂ ) ≤ 2σ(1+
√
α)δ

1/2
n + (1−√

α)U1/2(f∗) .

(Evgenii Chzhen and Schreuder, 2022)
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Lower bound

Define

δ̄n := δ̄n(p,K, t) := (
√

(p + K)/n +
√

32t/n)2/(3 · 29) . (1)

Lower bound

For all n, p,K ∈ N, t ≥ 0, σ > 0, α ∈ [0, 1] it holds for all t ≥ 0 and all

t′ ≤ 1− e−t/12 that any estimator f̂ satisfying

inf
(f∗,θ)∈F×Θ

P(f∗,θ)

(
U(f̂) ≤ αU(f∗)

)
≥ 1− t′ .

verifies

sup
(β̄∗,b∗),Σ≻0

P(β̄∗,b∗)

(
R1/2(f̂) ≥ σδ̄

1/2
n ∨ (1−√

α)U1/2(f∗)
)
≥ 1

12
e−t .

(Evgenii Chzhen and Schreuder, 2022)
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Numerical experiments
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Figure: Dashed green and brown lines correspond to the risk and unfairness of f∗
α

respectively. Solid green and brown lines correspond to the average risk and
unfairness of f̂τ(α) and the shaded region shows three standard deviations over 50
repetitions.



25/29

General post-processing procedure: definition
For each f : Rp × [K] → R, s ∈ [K] and i ∈ [2Ns], define the following r.v.

f̃s
i := f(Xs

i , s) + U([−σ, σ]) and f̃(x, s) := f(x, s) + U([−σ, σ]) ∀ x ∈ Rp .

Using the above quantities, we build the following estimators: for all t ∈ R

F̂1,νf
s
(t) :=

1

Ns+1

(
Ns∑
i=1

1
{
f̃s
i < t

}
+ U([0, 1])

(
1+

Ns∑
i=1

1
{
f̃s
i = t

}))
,

F̂2,νf
s
(t) :=

1

Ns

2Ns∑
i=Ns+1

1
{
f̃s
i ≤ t

}
.

Finally, for each f : Rp × [K] → R we define an estimator of f∗
0 ,

Π̂(f)(x, s) =

K∑
s′=1

ws′ F̂
−1

2,νf

s′
◦ F̂1,νf

s
◦ f̃(x, s), ∀(x, s) ∈ Rp × [K] .

How fair/accurate is it?
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General post-processing: fairness guarantees

Theorem (Demographic parity guarantee)
For any f : Rp × [K] → R, any joint distribution P of (X, S, Y ) and any
σ > 0, it holds that

Law
(
Π̂(f)(X, S) | S = s

)
= Law

(
Π̂(f)(X, S) | S = s′

)
∀s, s′ ∈ [K] .
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General post-processing: estimation guarantees

Assumption
For all s ∈ [K], the measures ν∗s are supported on an interval in R, admit
density w.r.t. Lebesgue measure which is lower and upper bounded by
λs > 0 and λs > 0 respectively.

Theorem (Estimation guarantee)
Let the above assumption and Assumption (A) hold. Then, for any base
prediction rule f : Rp × [K] → R, any σ ∈ (0, 1) and any q ∈ [1,∞),

E∥Π̂(f)−f∗
0 ∥q ≤ Cq

λ

(
∥f−f∗∥q +min

{
∥f−f∗∥1/p

q−1 +σ
1/p, ∥f−f∗∥∞ +σ

}
1{q>1}

+

{
K∑
s=1

wsN
−1/2
s

}
+

{
K∑
s=1

wsN
−q/2
s

}1/q

+ σ

)
,

where Cq

λ
depends only on (λs)s, (λs)s, q ∈ [1,∞) and 1/p + 1/q = 1.
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Thank you for your attention!

Questions?
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Thank you for your attention! Questions?

▶ Our unfairness measure puts two conflicting quantities on the same
scale: the risk-fairness trade-off is described by only one quantity.

▶ Minimax framework to study (relaxed) DP-fair estimators.

▶ Derived general problem-depend lower bound in this framework.

▶ Lower bound is tight for linear regression with systematic bias model.

▶ Only fair regression matters.

Open questions: what about

▶ other models?

▶ other fairness constraints/relaxations?

For more details:

▶ Evgenii Chzhen and Nicolas Schreuder (2022). “A minimax framework for
quantifying risk-fairness trade-off in regression”. In: The Annals of
Statistics 50.4, pp. 2416–2442

▶ Solenne Gaucher, Nicolas Schreuder, and Evgenii Chzhen (2023). “Fair
learning with Wasserstein barycenters for non-decomposable performance
measures”. In: International Conference on Artificial Intelligence and
Statistics. PMLR, pp. 2436–2459
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