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Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions
are being automated:

» bank loans,

» job pre-screenings,
» school admissions,
» criminal sentencings,
> etc.

Claim: The increasing automation of decision-making procedures critically
increases the risk of simultanecously automatising discriminations.

Let us see some concrete examples in the next slides.
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Is Amazon sexist?

World Business Markets Breakingviews Video More

RETAIL  OCTOBER 11, 2018 / 1:04 AM / UPDATED 4 YEARS AGO

Amazon scraps secret Al recruiting tool that
showed bias against women

By Jeffrey Dastin 8 MIN READ f v

SAN FRANCISCO (Reuters) - Amazon.com Inc’s AMZN.O machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.
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How to formalize fairness?

Data: (feature, sensitive attribute,label) ~ P on X x & x Y.
X 5 Y

Predictions: f: 2 — Y
» Fairness through awareness: Z = X x S (disparate treatment);

» Fairness through UNawareness: Z = X (legal reasons: regulations).

A popular formalization of fairness is Demographic Parity (DP). We say
that a prediction rule f: Z — ) satisfies DP if
f(Z)yLs.

In the case of binary classification Y = {0, 1} and binary sensitive attribute
S ={0,1}, it amounts to

P(f(X,S)=1]5=0)=P(f(X,8)=1|5=1) .

NB: Other formalizations of fairness exist, there is no “best one”.



Popular definitions of fair classifiers
» Demographic Parity (DP)
P(f(Z) =15 =0) = B(f(Z) =1] 5 = 1
1. Prediction rate is the same for two groups.

2. Random variable f(Z) is independent from S.
3. DP (not differential privacy!) cares only about X|S.



Popular definitions of fair classifiers
> Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)
P(f(Z)=1]5=0)=P(f(Z)=1]5=1)
1. Prediction rate is the same for two groups.

2. Random variable f(Z) is independent from S.
3. DP (not differential privacy!) cares only about X|S.

| 4 Equalized Odds (M. Hardt, Price, and Srebro, 2016)
P(f(Z) =y |V =45 =) =P(f(Z) =y |V = 5,5 =1) Vye{0,1}

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.



Popular definitions of fair classifiers
> Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)
P(f(Z)=1]5=0)=P(f(Z)=1]5=1)
1. Prediction rate is the same for two groups.

2. Random variable f(Z) is independent from S.
3. DP (not differential privacy!) cares only about X|S.

| 4 Equalized Odds (M. Hardt, Price, and Srebro, 2016)
P(f(Z) =y |V =45 =) =P(f(Z) =y |V = 5,5 =1) Vye{0,1}

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

» Equal Opportunity (M. Hardt, Price, and Srebro, 2016)
P(f(Z)=1|Y =1,S=0)=P(f(Z)=1|Y =1,5 = 1)
1. Equal True Positive rates.
2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute.



Popular definitions of fair classifiers
> Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)
P(f(Z2)=1]5=0)=P(f(Z)=1]5=1)
1. Prediction rate is the same for two groups.

2. Random variable f(Z) is independent from S.
3. DP (not differential privacy!) cares only about X|S.

> Equalized Odds (M. Hardt, Price, and Srebro, 2016)
P(f(Z)=y|Y =y.5=0)=P(f(Z2)=y|Y =y.5=1) Vye{0,1}

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

» Equal Opportunity (M. Hardt, Price, and Srebro, 2016)
P(f(Z)=1|Y =1,S=0)=P(f(Z)=1|Y =1,5 = 1)
1. Equal True Positive rates.
2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute.

Question: Which one(s) should we enforce?
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Incompatibility of fairness constraints'

1. f(Z) L S - independence (DP, Statistical Parity)
2. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)

3. (Y LS)| f(Z) - sufficiency (Test fairness)

Proposition

IfY e{0,1}, SLY ,and f(Z)JL Y, then independence and separation

cannot hold simultaneously.

Similarly, separation cannot hold simultaneously as suff./sep. in general.

Consequences: need to choose one notion of fairness (or relax?).

1Taken from Chapter 2 of (Barocas, Moritz Hardt, and Narayanan, 2019).



Some personal contributions on
the Demographic Parity
constraint



The cost of fairness/Demographic Parity

» Many works empirically studied the impact of (relaxed) fairness
constraints on the risk

» Yet, the problem of mathematically/statistically quantifying the effect
of such constraints on the risk had not been tackled.



Optimal transport and the Wasserstein-2 metric

Define, for ji, 7 € Po(R?),

W2(p, ) = inf {Exv)|X — Y[3: X ~p,Y ~ v}.

» Metric on Po(R?).

» Highly flexible/handy.

» Nice geometric features.

=vey

Figure: Transport plan illustration
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Squared-loss regression under relaxed DP

(feature, sensitive attribute, label) ~ P on X x S x R.
X 5 Y

1. Predictions: f: X xS — R.
2. Risk: R(f) =E(Y — f(X,9))?, min. by f*(z,s) = E[Y|X=z, S=s]).

3. Relaxed Demographic parity: U(f) < aU(f*), where 0 < o <1 and

U(f) = myinZwswg(LaW(f(X,SﬂS =3),v) € [0, +00).

sES

& U(f) =0 if and only if [ satisfies DP.

’(,L-Relative Improvement: fX € argmin {R(f) : U(f) < aZ/l(f*)}‘

Question: What is the price —in risk— of considering fair predictors?
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Unfairness through Wasserstein barycenters

U(f) =min Yy wW3(Law(f(X,5)|S = s),v).

seS
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Main assumption

Assumption (A)
The group-wise prediction distributions Law(f*(X,S) | S = s) have finite
second moment and are non-atomic for any s in S.
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Improving unfairness oracles

a-Relative Improvement f € argmin {R(f) : ‘L{(f) <al(f*)

j

Theorem

Under Assumption (A), for all a € [0, 1] it holds that

fa=Vafi +(1=Va)fg .

Theorem

Under Assumption (A),

Law(f5(X,9)) = argminE:wSVVQ2 (Law(f*(X,8) | S=5s),v) ,
v seS

fo(x, s) (Zw 15— ) o Fyejg=s 0 [*(@,5) ,

s'eS
where w, = P(S=s), Fy-5—,(t) = P(f*(X, S)<t|S=s).




Key ingredient for the proof

Abstract geometric lemma
Let (X, d) be a metric space in which barycenters are well-defined. Let
a=(ay,...,ax) € X5 w=(wy,...,wg)" € AX"1 and let C, be a
barycenter of a with respect to weights w. For a fixed a € [0, 1] assume
that there exists b= (by,...,bx) € XK which satisfies
d(as,Cq) = d(as,bs) + d(bs,Cq) s=1,....,.K | (Py)

d(bs,as) = (1—va)d(as, Cq) s=1,...,K . (P)

Then, b is a solution of

bér}‘fK{Zws (bs,as) Zws (bs, Cp) <aZws as,C’a)}

s=1




Key ingredient for the proof

Geometric lemma with o = 0.75 Geometric lemma with o = 0.5 Geometric lemma with o = (.25
az az
:11,
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Figure: Illustration of the abstract geometric lemma, for (X, d) = (R?, || - ||2) and

a € {0.25,0.5,0.75}. The initial points a1, az, as are the vertices of an isosceles
triangle. The weights are set as follows: w; = 0.1, w2 = 0.4 and ws = 0.5.



What is (exact) fair regression?

Fair optimal prediction f; with w; =2/5 and wy = 3/5

4 Q === Law of f*|S=1
/
’ \ —+= Law of f*|S=2
’
\
4 \ I
\ 7 ~,
\ R N
AN e N
\ A N
) R N
\\ - ~
- ~




What is (exact) fair regression?

Fair optimal prediction f; with w; =2/5 and wy = 3/5

FON —== Law of f*|S=1
£ N —-= Law of f*|5=2
/ \
\ P——
\ R/ .
v N
R N
\ R N
\ s ~
S e ~
S S~
* T T
@1 f(,2)
,"\\‘ === Law of f*|S=1
/ N —= Law of f*|5=2
£ \ P Law of f
\ -~ ~.
\ N
Rz N,
\ N,
v ~
S - | N
S ~.
. == . L e —
(@) fo (@, )=f5(z,2) f(@,2)
*
fO Z, 5 E wy F f \S s/)oFf*\S:sof (CE,S)

s'eS




Risk/fairness trade-off

a-Relative Improvement f! € arg min {R(f) : ’Z/{(f) <al(f")

j




Risk/fairness trade-off

a-Relative Improvement f! € arg min {R(f) : ‘Z/l(f) <al(f")

j

Proposition

Under Assumption (A), for all a € [0, 1] it holds that

R(f2) = (1=Vay|u(s)]| and u(f;)=a :




Risk/fairness trade-off

a-Relative Improvement f! € arg min {R(f) : ‘L{(f) <al(f")

j

Proposition
Under Assumption (A), for all a € [0, 1] it holds that

R(f2) = (1=Vay u(f)]| and u(f2)=alu(f)].

(Evgenii Chzhen and Schreuder, 2022)
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Minimax statistical framework

Data: (X1,51,Y1),- -, (X0, Sn, Ya) "5 Pseg), (f5,0) € Fx O

Given a € [0,1] and ¢ > 0, the goal of the statistician is to construct an

estimator f, which simultaneously satisfies

1. Uniform fairness guarantee:
V(f0) € Fx O P (Ulf) <aU(f)) =11,
2. Uniform risk guarantee:

V(f*0) €FxO P (RUf) < s (F.0.8) 21—t .



Application to linear model with systematic bias

Linear regression with systematic group-dependent bias model:
Y = <XivB*>+bgi +0o&, i=1,....,n,

id.d. id.d.
where {&,}2, “K" A(0,1) 1L {X 1, “KS N(0,2) AL {8},
We assume that o is known and ¥ > 0.

We propose an estimator f which, with probability at least 1 — §, satisfies

U(f) < al(f*) and achieves the minimax optimal rate

rify = o (25 2 L vapui

n n

Recently, proposed an extension of our model to
allow correlations between X and S.



Proposed estimator (1/2)

Oracle a-RI

Under the considered model it holds that

K
fa(@,s) = (x,8) + Vb + (1-va) Y wbi,  Vae[0,1] .
s=1

Plug-in estimated parameters

K

(3,b) € argmin Zws Yy — X8 = bsly,
(B.b)ERP XRX 2=

2

Ns

to get a family of linear estimators

K
fr(@,s) = (@, B) + Vbs + (1=v7) > _wibs,  (x,5) €RP x [K] .



Proposed estimator (2/2)

Define

K | K 2
n n n n n n

Upper bound theorem

Let a € [0,1]. For n “large enough”, setting

-2
5 ; :
U'E(f1) — b
it holds with probability at least 1 — 4e~*/2 that

U(fr) < all(f*) and R (f;) < 20(1+Va)s, + (1—Va)U'(f*) .




Lower bound

Define

On = 0n(p, K, t) = (/@0 + K) fn 4 /32t/,)2 /(3. 29) (1)

Lower bound

For all n,p, K € N, t >0, 0 >0, « € [0,1] it holds for all ¢ > 0 and all
t' <1 — e */12 that any estimator f satisfying

P (U0 2 0) 211

verifies

. _ 1
Csup P (RG) 2 08 (=)t () 2 et
(B*,b*),2>0




Numerical experiments

Naive: balanced, p = 10, K = 5,NUR = (.2

Proposed: balanced, p = 10, K = 5, NUR = 0.2
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Figure: Dashed green and brown lines correspond to the risk and unfairness of f}
respectively. SAolid green and brown lines correspond to the average risk and
unfairness of f;(,) and the shaded region shows three standard deviations over 50

repetitions.



General post-processing procedure: definition
For each f: RP x [K] - R, s € [K] and i € [2N;], define the following r.v.

f=f(X:s)+U(—0,0]) and  f(xz,s):= f(x,s)+U(~0,0]) VxeRP .

Using the above quantities, we build the following estimators: for all t € R

FLVSf(t) = Nsl+1 <§:]1{f': < t} +U([0,1]) <1+Z {f: = t})) ,
i=1
2N,

By (t) = Ni > n{ﬁs gt} :

S i=Ns+1

Finally, for each f:RP x [K] — R we define an estimator of f,

K
= Z wsfﬁ’;ylf oﬁl i o f(z,s), Y(x,s)cRPx[K] .

s'=1

How fair/accurate is it?



General post-processing: fairness guarantees

Theorem (Demographic parity guarantee)

For any f: RP x [K] = R, any joint distribution P of (X,S,Y) and any
o >0, it holds that

Law (ﬂ(f)(X,S) |S = s) = Law (ﬂ(f)(X,S) 1S = s') Vs, s' € [K] .



General post-processing: estimation guarantees

Assumption

For all s € [K|, the measures v} are supported on an interval in R, admit
density w.r.t. Lebesgue measure which is lower and upper bounded by
Ay > 0 and A > 0 respectively.

Theorem (Estimation guarantee)

Let the above assumption and Assumption (A) hold. Then, for any base
prediction rule f:RP x [K] = R, any o € (0,1) and any q € [1,00),

BRI~ fill < C( 17171, +min {1~ 40 11 b0} 11

K K Y/a
| {Zwst”Q} " {ZWSNf} “a).
s=1 s=1

where C’% depends only on (A,)s, (Ns)s, ¢ € [1,00) and 1Jp+ /g = 1.
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» Derived general problem-depend lower bound in this framework.
» Lower bound is tight for linear regression with systematic bias model.

» Only fair regression matters.
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Thank you for your attention! Questions?

» QOur unfairness measure puts two conflicting quantities on the same
scale: the risk-fairness trade-off is described by only one quantity.

» Minimax framework to study (relaxed) DP-fair estimators.
» Derived general problem-depend lower bound in this framework.
» Lower bound is tight for linear regression with systematic bias model.
» Only fair regression matters.
Open questions: what about
» other models?
» other fairness constraints/relaxations?
For more details:

» Evgenii Chzhen and Nicolas Schreuder (2022). “A minimax framework for
quantifying risk-fairness trade-off in regression”. In: The Annals of
Statistics 50.4, pp. 2416-2442

» Solenne Gaucher, Nicolas Schreuder, and Evgenii Chzhen (2023). “Fair
learning with Wasserstein barycenters for non-decomposable performance

measures”. In: International Conference on Artificial Intelligence and
Statistics. PMLR, pp. 24362459
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