Fairness in machine learning

A study of the Demographic Parity constraint

Nicolas Schreuder
Joint work with E. Chzhen (CNRS) \& S. Gaucher (CREST)

Fairness in machine learning?

Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions are being automated:

Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions are being automated:

- bank loans,
- job pre-screenings,
- school admissions,
- criminal sentencings,
- etc.

Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions are being automated:

- bank loans,
- job pre-screenings,
- school admissions,
- criminal sentencings,
- etc.

Claim: The increasing automation of decision-making procedures critically increases the risk of simultaneously automatising discriminations.

Fairness in machine learning?

For scaling/financial reasons, an increasing number of high-stakes decisions are being automated:

- bank loans,
- job pre-screenings,
- school admissions,
- criminal sentencings,
- etc.

Claim: The increasing automation of decision-making procedures critically increases the risk of simultaneously automatising discriminations.

Let us see some concrete examples in the next slides.

Is Amazon sexist?

Amazon scraps secret AI recruiting tool that showed bias against women

By Jeffrey Dastin
8 MIN READ
f

SAN FRANCISCO (Reuters) - Amazon.com Inc's AMZN.O machine-learning
specialists uncovered a big problem: their new recruiting engine did not like women.

Is Google Translate sexist?

How to formalize fairness?

Data: ($\underbrace{\text { feature }}_{X}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathcal{Y}$.

How to formalize fairness?

Data: ($\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathcal{Y}$.
Predictions: $f: \mathcal{Z} \rightarrow \mathcal{Y}$

- Fairness through awareness: $\mathcal{Z}=\mathcal{X} \times \mathcal{S}$ (disparate treatment);
- Fairness through UNawareness: $\mathcal{Z}=\mathcal{X}$ (legal reasons: regulations).

How to formalize fairness?

Data: ($\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathcal{Y}$.
Predictions: $f: \mathcal{Z} \rightarrow \mathcal{Y}$

- Fairness through awareness: $\mathcal{Z}=\mathcal{X} \times \mathcal{S}$ (disparate treatment);
- Fairness through UNawareness: $\mathcal{Z}=\mathcal{X}$ (legal reasons: regulations).

A popular formalization of fairness is Demographic Parity (DP). We say that a prediction rule $f: \mathcal{Z} \rightarrow \mathcal{Y}$ satisfies DP if

$$
f(\boldsymbol{Z}) \Perp S .
$$

How to formalize fairness?

Data: ($\underbrace{\text { feature }}_{X}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathcal{Y}$.
Predictions: $f: \mathcal{Z} \rightarrow \mathcal{Y}$

- Fairness through awareness: $\mathcal{Z}=\mathcal{X} \times \mathcal{S}$ (disparate treatment);
- Fairness through UNawareness: $\mathcal{Z}=\mathcal{X}$ (legal reasons: regulations).

A popular formalization of fairness is Demographic Parity (DP). We say that a prediction rule $f: \mathcal{Z} \rightarrow \mathcal{Y}$ satisfies DP if

$$
f(\boldsymbol{Z}) \Perp S .
$$

In the case of binary classification $\mathcal{Y}=\{0,1\}$ and binary sensitive attribute $\mathcal{S}=\{0,1\}$, it amounts to

$$
\mathbb{P}(f(X, S)=1 \mid S=0)=\mathbb{P}(f(X, S)=1 \mid S=1)
$$

How to formalize fairness?

Data: ($\underbrace{\text { feature }}_{X}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathcal{Y}$.
Predictions: $f: \mathcal{Z} \rightarrow \mathcal{Y}$

- Fairness through awareness: $\mathcal{Z}=\mathcal{X} \times \mathcal{S}$ (disparate treatment);
- Fairness through UNawareness: $\mathcal{Z}=\mathcal{X}$ (legal reasons: regulations).

A popular formalization of fairness is Demographic Parity (DP). We say that a prediction rule $f: \mathcal{Z} \rightarrow \mathcal{Y}$ satisfies DP if

$$
f(\boldsymbol{Z}) \Perp S .
$$

In the case of binary classification $\mathcal{Y}=\{0,1\}$ and binary sensitive attribute $\mathcal{S}=\{0,1\}$, it amounts to

$$
\mathbb{P}(f(X, S)=1 \mid S=0)=\mathbb{P}(f(X, S)=1 \mid S=1)
$$

NB: Other formalizations of fairness exist, there is no "best one".

Popular definitions of fair classifiers

- Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=1)
$$

1. Prediction rate is the same for two groups.
2. Random variable $f(\boldsymbol{Z})$ is independent from S.
3. DP (not differential privacy!) cares only about $\boldsymbol{X} \mid S$.

Popular definitions of fair classifiers

- Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=1)
$$

1. Prediction rate is the same for two groups.
2. Random variable $f(\boldsymbol{Z})$ is independent from S.
3. DP (not differential privacy!) cares only about $\boldsymbol{X} \mid S$.

- Equalized Odds (M. Hardt, Price, and Srebro, 2016)

$$
\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=0)=\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=1) \quad \forall y \in\{0,1\}
$$

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

Popular definitions of fair classifiers

- Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=1)
$$

1. Prediction rate is the same for two groups.
2. Random variable $f(\boldsymbol{Z})$ is independent from S.
3. DP (not differential privacy!) cares only about $\boldsymbol{X} \mid S$.

- Equalized Odds (M. Hardt, Price, and Srebro, 2016)

$$
\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=0)=\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=1) \quad \forall y \in\{0,1\}
$$

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

- Equal Opportunity (M. Hardt, Price, and Srebro, 2016)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid Y=1, S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid Y=1, S=1)
$$

1. Equal True Positive rates.
2. If a person \boldsymbol{Z} is qualified $(Y=1)$ then positive prediction $(f(\boldsymbol{Z})=1)$ is given with the same probability for any sensitive attribute.

Popular definitions of fair classifiers

- Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid S=1)
$$

1. Prediction rate is the same for two groups.
2. Random variable $f(\boldsymbol{Z})$ is independent from S.
3. DP (not differential privacy!) cares only about $\boldsymbol{X} \mid S$.

- Equalized Odds (M. Hardt, Price, and Srebro, 2016)

$$
\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=0)=\mathbb{P}(f(\boldsymbol{Z})=y \mid Y=y, S=1) \quad \forall y \in\{0,1\}
$$

1. Equal True Positive and True Negative rates.
2. Requires more knowledge about the distribution.

- Equal Opportunity (M. Hardt, Price, and Srebro, 2016)

$$
\mathbb{P}(f(\boldsymbol{Z})=1 \mid Y=1, S=0)=\mathbb{P}(f(\boldsymbol{Z})=1 \mid Y=1, S=1)
$$

1. Equal True Positive rates.
2. If a person \boldsymbol{Z} is qualified $(Y=1)$ then positive prediction $(f(\boldsymbol{Z})=1)$ is given with the same probability for any sensitive attribute.

Question: Which one(s) should we enforce?

Incompatibility of fairness constraints ${ }^{1}$

1. $f(\boldsymbol{Z}) \Perp S$ - independence (DP, Statistical Parity)
2. $(f(\boldsymbol{Z}) \Perp S) \mid Y$ - separation (Equal Odds, Equal Opportunity)
3. $(Y \Perp S) \mid f(\boldsymbol{Z})$ - sufficiency (Test fairness)

Incompatibility of fairness constraints ${ }^{1}$

1. $f(\boldsymbol{Z}) \Perp S$ - independence (DP, Statistical Parity)
2. $(f(\boldsymbol{Z}) \Perp S) \mid Y$ - separation (Equal Odds, Equal Opportunity)
3. $(Y \Perp S) \mid f(\boldsymbol{Z})$ - sufficiency (Test fairness)

Proposition
If $Y \in\{0,1\}, S \not \Perp Y$, and $f(\boldsymbol{Z}) \not \Perp Y$, then independence and separation cannot hold simultaneously.

Incompatibility of fairness constraints ${ }^{1}$

1. $f(\boldsymbol{Z}) \Perp S$ - independence (DP, Statistical Parity)
2. $(f(\boldsymbol{Z}) \Perp S) \mid Y$ - separation (Equal Odds, Equal Opportunity)
3. $(Y \Perp S) \mid f(\boldsymbol{Z})$ - sufficiency (Test fairness)

Proposition
If $Y \in\{0,1\}, S \not \Perp Y$, and $f(\boldsymbol{Z}) \not \Perp Y$, then independence and separation cannot hold simultaneously.

Similarly, separation cannot hold simultaneously as suff./sep. in general.

Incompatibility of fairness constraints ${ }^{1}$

1. $f(\boldsymbol{Z}) \Perp S$ - independence (DP, Statistical Parity)
2. $(f(\boldsymbol{Z}) \Perp S) \mid Y$ - separation (Equal Odds, Equal Opportunity)
3. $(Y \Perp S) \mid f(\boldsymbol{Z})$ - sufficiency (Test fairness)

Proposition

If $Y \in\{0,1\}, S \not \Perp Y$, and $f(\boldsymbol{Z}) \not \Perp Y$, then independence and separation cannot hold simultaneously.

Similarly, separation cannot hold simultaneously as suff./sep. in general.
Consequences: need to choose one notion of fairness (or relax?).

Some personal contributions on the Demographic Parity constraint

The cost of fairness/Demographic Parity

- Many works empirically studied the impact of (relaxed) fairness constraints on the risk (Bertsimas, Farias, and Trichakis, 2012; Zliobaite, 2015; Kleinberg, Mullainathan, and Raghavan, 2016; Zafar et al., 2017; Haas, 2019;
Wick, Tristan, et al., 2019).
- Yet, the problem of mathematically/statistically quantifying the effect of such constraints on the risk had not been tackled.

Optimal transport and the Wasserstein-2 metric

Define, for $\mu, \nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\mathbf{W}_{2}^{2}(\mu, \nu):=\inf \left\{\mathbb{E}_{(X, Y)}\|\boldsymbol{X}-Y\|_{2}^{2}: X \sim \mu, Y \sim \nu\right\}
$$

- Metric on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.
- Highly flexible/handy.
- Nice geometric features.

Figure: Transport plan illustration

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{X}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

1. Predictions: $f: \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$.

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

1. Predictions: $f: \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$.
2. Risk: $\mathcal{R}(f):=\mathbb{E}(Y-f(\boldsymbol{X}, S))^{2}$, min. by $\left.f^{*}(x, s):=\mathbb{E}[Y \mid X=x, S=s]\right)$.

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

1. Predictions: $f: \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$.
2. Risk: $\mathcal{R}(f):=\mathbb{E}(Y-f(\boldsymbol{X}, S))^{2}$, min. by $\left.f^{*}(x, s):=\mathbb{E}[Y \mid X=x, S=s]\right)$.
3. Relaxed Demographic parity: $\mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)$, where $0 \leq \alpha \leq 1$ and

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathrm{~W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu) \in[0,+\infty) .
$$

\& $\mathcal{U}(f)=0$ if and only if f satisfies DP.

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

1. Predictions: $f: \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$.
2. Risk: $\mathcal{R}(f):=\mathbb{E}(Y-f(\boldsymbol{X}, S))^{2}$, min. by $\left.f^{*}(x, s):=\mathbb{E}[Y \mid X=x, S=s]\right)$.
3. Relaxed Demographic parity: $\mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)$, where $0 \leq \alpha \leq 1$ and

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathrm{~W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu) \in[0,+\infty)
$$

\& $\mathcal{U}(f)=0$ if and only if f satisfies DP.
α-Relative Improvement: $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Squared-loss regression under relaxed DP

$(\underbrace{\text { feature }}_{\boldsymbol{X}}, \underbrace{\text { sensitive attribute }}_{S}, \underbrace{\text { label }}_{Y}) \sim \mathbb{P}$ on $\mathcal{X} \times \mathcal{S} \times \mathbb{R}$.

1. Predictions: $f: \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$.
2. Risk: $\mathcal{R}(f):=\mathbb{E}(Y-f(\boldsymbol{X}, S))^{2}$, min. by $\left.f^{*}(x, s):=\mathbb{E}[Y \mid X=x, S=s]\right)$.
3. Relaxed Demographic parity: $\mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)$, where $0 \leq \alpha \leq 1$ and

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathrm{~W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu) \in[0,+\infty)
$$

\& $\mathcal{U}(f)=0$ if and only if f satisfies DP.
α-Relative Improvement: $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Question: What is the price -in risk- of considering fair predictors?

Unfairness through Wasserstein barycenters

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathrm{~W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu)
$$

Unfairness through Wasserstein barycenters

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathrm{~W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu) .
$$

Unfairness through Wasserstein barycenters

$$
\mathcal{U}(f)=\min _{\nu} \sum_{s \in \mathcal{S}} w_{s} \mathbf{W}_{2}^{2}(\operatorname{Law}(f(\boldsymbol{X}, S) \mid S=s), \nu) .
$$

Main assumption

[^0]
Improving unfairness oracles

α-Relative Improvement $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Improving unfairness oracles

α-Relative Improvement $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$
Theorem
Under Assumption (A), for all $\alpha \in[0,1]$ it holds that

$$
f_{\alpha}^{*} \equiv \sqrt{\alpha} f_{1}^{*}+(1-\sqrt{\alpha}) f_{0}^{*} .
$$

(Evgenii Chzhen and Schreuder, 2022)

Improving unfairness oracles

α-Relative Improvement $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Under Assumption (A), for all $\alpha \in[0,1]$ it holds that

$$
f_{\alpha}^{*} \equiv \sqrt{\alpha} f_{1}^{*}+(1-\sqrt{\alpha}) f_{0}^{*} .
$$

(Evgenii Chzhen and Schreuder, 2022)

Theorem

Under Assumption (A),

$$
\begin{gathered}
\operatorname{Law}\left(f_{0}^{*}(\boldsymbol{X}, S)\right)=\underset{\nu}{\arg \min } \sum_{s \in \mathcal{S}} w_{s} W_{2}^{2}\left(\operatorname{Law}\left(f^{*}(\boldsymbol{X}, S) \mid S=s\right), \nu\right), \\
f_{0}^{*}(\boldsymbol{x}, s)=\left(\sum_{s^{\prime} \in \mathcal{S}} w_{s^{\prime}} F_{f^{*} \mid S=s^{\prime}}^{-1}\right) \circ F_{f^{*} \mid S=s} \circ f^{*}(\boldsymbol{x}, s),
\end{gathered}
$$

where $w_{s}=\mathbb{P}(S=s), F_{f^{*} \mid S=s}(t)=\mathbb{P}\left(f^{*}(\boldsymbol{X}, S) \leq t \mid S=s\right)$.

Key ingredient for the proof

Abstract geometric lemma

Let (\mathcal{X}, d) be a metric space in which barycenters are well-defined. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{K}\right) \in \mathcal{X}^{K}, \boldsymbol{w}=\left(w_{1}, \ldots, w_{K}\right)^{\top} \in \Delta^{K-1}$ and let $C_{\boldsymbol{a}}$ be a barycenter of \boldsymbol{a} with respect to weights \boldsymbol{w}. For a fixed $\alpha \in[0,1]$ assume that there exists $\boldsymbol{b}=\left(b_{1}, \ldots, b_{K}\right) \in \mathcal{X}^{K}$ which satisfies

$$
\begin{array}{ll}
d\left(a_{s}, C_{\boldsymbol{a}}\right)=d\left(a_{s}, b_{s}\right)+d\left(b_{s}, C_{\boldsymbol{a}}\right), & s=1, \ldots, K \\
d\left(b_{s}, a_{s}\right)=(1-\sqrt{\alpha}) d\left(a_{s}, C_{\boldsymbol{a}}\right), & s=1, \ldots, K \tag{2}
\end{array}
$$

Then, \boldsymbol{b} is a solution of

$$
\inf _{\boldsymbol{b} \in \mathcal{X}^{K}}\left\{\sum_{s=1}^{K} w_{s} d^{2}\left(b_{s}, a_{s}\right): \sum_{s=1}^{K} w_{s} d^{2}\left(b_{s}, C_{\boldsymbol{b}}\right) \leq \alpha \sum_{s=1}^{K} w_{s} d^{2}\left(a_{s}, C_{\boldsymbol{a}}\right)\right\}
$$

Key ingredient for the proof

Figure: Illustration of the abstract geometric lemma for $(\mathcal{X}, d)=\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$ and $\alpha \in\{0.25,0.5,0.75\}$. The initial points a_{1}, a_{2}, a_{3} are the vertices of an isosceles triangle. The weights are set as follows: $w_{1}=0.1, w_{2}=0.4$ and $w_{3}=0.5$.

What is (exact) fair regression?

Fair optimal prediction f_{0}^{*} with $w_{1}=2 / 5$ and $w_{2}=3 / 5$

What is (exact) fair regression?

Fair optimal prediction f_{0}^{*} with $w_{1}=2 / 5$ and $w_{2}=3 / 5$

$$
f_{0}^{*}(\boldsymbol{x}, s)=\left(\sum_{s^{\prime} \in \mathcal{S}} w_{s^{\prime}} F_{f^{*} \mid S=s^{\prime}}^{-1}\right) \circ F_{f^{*} \mid S=s} \circ f^{*}(\boldsymbol{x}, s)
$$

Risk/fairness trade-off

α-Relative Improvement $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathscr{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Risk/fairness trade-off

α-Relative Improvement $\quad f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathcal{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$
Proposition
Under Assumption (A), for all $\alpha \in[0,1]$ it holds that

$$
\mathcal{R}\left(f_{\alpha}^{*}\right)=(1-\sqrt{\alpha})^{2} \mathcal{U}\left(f^{*}\right) \quad \text { and } \quad \mathcal{U}\left(f_{\alpha}^{*}\right)=\alpha \mathscr{U}\left(f^{*}\right) .
$$

Risk/fairness trade-off

α-Relative Improvement $f_{\alpha}^{*} \in \arg \min \left\{\mathcal{R}(f): \mathscr{U}(f) \leq \alpha \mathcal{U}\left(f^{*}\right)\right\}$

Proposition

Under Assumption (A), for all $\alpha \in[0,1]$ it holds that

$$
\mathcal{R}\left(f_{\alpha}^{*}\right)=(1-\sqrt{\alpha})^{2} \mathcal{U}\left(f^{*}\right) \quad \text { and } \quad \mathcal{U}\left(f_{\alpha}^{*}\right)=\alpha \mathscr{U}\left(f^{*}\right) .
$$

(Evgenii Chzhen and Schreuder, 2022)

Minimax statistical framework

Data: $\left(\boldsymbol{X}_{1}, S_{1}, Y_{1}\right), \ldots,\left(\boldsymbol{X}_{n}, S_{n}, Y_{n}\right) \stackrel{i . i . d .}{\sim} \mathbf{P}_{\left(f^{*}, \boldsymbol{\theta}\right)},\left(f^{*}, \boldsymbol{\theta}\right) \in \mathcal{F} \times \Theta$ Given $\alpha \in[0,1]$ and $t>0$, the goal of the statistician is to construct an estimator \hat{f}, which simultaneously satisfies

1. Uniform fairness guarantee:

$$
\forall\left(f^{*}, \boldsymbol{\theta}\right) \in \mathcal{F} \times \Theta \quad \mathbf{P}_{\left(f^{*}, \boldsymbol{\theta}\right)}\left(\mathcal{U}(\hat{f}) \leq \alpha \mathcal{U}\left(f^{*}\right)\right) \geq 1-t
$$

2. Uniform risk guarantee:

$$
\forall\left(f^{*}, \boldsymbol{\theta}\right) \in \mathcal{F} \times \Theta \quad \mathbf{P}_{\left(f^{*}, \boldsymbol{\theta}\right)}\left(\mathcal{R}(\hat{f}) \leq r_{n, \alpha, f^{*}}(\mathcal{F}, \Theta, t)\right) \geq 1-t
$$

Application to linear model with systematic bias

Linear regression with systematic group-dependent bias model:

$$
Y_{i}=\left\langle\boldsymbol{X}_{i}, \bar{\beta}^{*}\right\rangle+b_{S_{i}}^{*}+\sigma \xi_{i}, \quad i=1, \ldots, n,
$$

where $\left\{\xi_{i}\right\}_{i=1}^{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1) \Perp\left\{\boldsymbol{X}_{i}\right\}_{i=1}^{n} \stackrel{i . i . d .}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \Perp\left\{S_{i}\right\}_{i=1}^{n}$.
We assume that σ is known and $\boldsymbol{\Sigma}>0$.
We propose an estimator \hat{f} which, with probability at least $1-\delta$, satisfies $\mathcal{U}(\hat{f}) \leq \alpha \mathcal{U}\left(f^{*}\right)$ and achieves the minimax optimal rate

$$
\mathcal{R}(\hat{f}) \asymp\left\{\sigma^{2}\left(\frac{p+K}{n}+\frac{\log (1 / \delta)}{n}\right)\right\} \bigvee\left\{(1-\sqrt{\alpha})^{2} \mathcal{U}\left(f^{*}\right)\right\} .
$$

Recently, (Fukuchi and Sakuma, 2022) proposed an extension of our model to allow correlations between X and S.

Proposed estimator (1/2)

Oracle α-RI
Under the considered model it holds that

$$
f_{\alpha}^{*}(\boldsymbol{x}, s)=\left\langle\boldsymbol{x}, \bar{\beta}^{*}\right\rangle+\sqrt{\alpha} b_{s}^{*}+(1-\sqrt{\alpha}) \sum_{s=1}^{K} w_{s} b_{s}^{*}, \quad \forall \alpha \in[0,1] .
$$

Plug-in estimated parameters

$$
(\hat{\beta}, \hat{\boldsymbol{b}}) \in \underset{(\bar{\beta}, \boldsymbol{b}) \in \mathbb{R}^{p} \times \mathbb{R}^{K}}{\arg \min } \sum_{s=1}^{K} w_{s}\left\|\boldsymbol{Y}_{s}-\mathbf{X}_{s} \bar{\beta}-b_{s} \mathbf{1}_{n_{s}}\right\|_{n_{s}}^{2}
$$

to get a family of linear estimators

$$
\hat{f}_{\tau}(\boldsymbol{x}, s)=\langle\boldsymbol{x}, \hat{\beta}\rangle+\sqrt{\tau} \hat{b}_{s}+(1-\sqrt{\tau}) \sum_{s=1}^{K} w_{s} \hat{b}_{s}, \quad(\boldsymbol{x}, s) \in \mathbb{R}^{p} \times[K] .
$$

Proposed estimator (2/2)

Define

$$
\delta_{n}:=\delta_{n}(p, K, t)=8\left(\frac{p}{n}+\frac{K}{n}\right)+16\left(\sqrt{\frac{p}{n}}+\sqrt{\frac{K}{n}}\right) \sqrt{\frac{t}{n}}+\frac{32 t}{n} .
$$

Upper bound theorem
Let $\alpha \in[0,1]$. For n "large enough", setting

$$
\hat{\tau}=\alpha\left(1+\frac{\sigma \delta_{n}^{1 / 2}}{\mathcal{U}^{1 / 2}\left(\hat{f}_{1}\right)-\sigma \delta_{n}^{1 / 2}}\right)^{-2} \mathbb{1}\left(\mathcal{U}^{1 / 2}\left(\hat{f}_{1}\right)>\sigma \delta_{n}^{1 / 2}\right)
$$

it holds with probability at least $1-4 e^{-t / 2}$ that

$$
\mathcal{U}\left(\hat{f}_{\hat{\tau}}\right) \leq \alpha \mathcal{U}\left(f^{*}\right) \quad \text { and } \quad \mathcal{R}^{1 / 2}\left(\hat{f}_{\hat{\tau}}\right) \leq 2 \sigma(1+\sqrt{\alpha}) \delta_{n}^{1 / 2}+(1-\sqrt{\alpha}) \mathcal{U}^{1 / 2}\left(f^{*}\right) .
$$

Lower bound

Define

$$
\begin{equation*}
\bar{\delta}_{n}:=\bar{\delta}_{n}(p, K, t):=(\sqrt{(p+K) / n}+\sqrt{32 t / n})^{2} /\left(3 \cdot 2^{9}\right) . \tag{1}
\end{equation*}
$$

Lower bound
For all $n, p, K \in \mathbb{N}, t \geq 0, \sigma>0, \alpha \in[0,1]$ it holds for all $t \geq 0$ and all $t^{\prime} \leq 1-e^{-t} / 12$ that any estimator \hat{f} satisfying

$$
\inf _{\left(f^{*}, \boldsymbol{\theta}\right) \in \mathcal{F} \times \Theta} \mathbf{P}_{\left(f^{*}, \boldsymbol{\theta}\right)}\left(\mathcal{U}(\hat{f}) \leq \alpha \mathcal{U}\left(f^{*}\right)\right) \geq 1-t^{\prime}
$$

verifies

$$
\sup _{\left(\bar{\beta}^{*}, b^{*}\right), \boldsymbol{\Sigma \succ 0}} \mathbf{P}_{\left(\bar{\beta}^{*}, b^{*}\right)}\left(\mathcal{R}^{1 / 2}(\hat{f}) \geq \sigma \bar{\delta}_{n}^{1 / 2} \vee(1-\sqrt{\alpha}) \mathcal{U}^{1 / 2}\left(f^{*}\right)\right) \geq \frac{1}{12} e^{-t}
$$

Numerical experiments

Figure: Dashed green and brown lines correspond to the risk and unfairness of f_{α}^{*} respectively. Solid green and brown lines correspond to the average risk and unfairness of $\hat{f}_{\tau(\alpha)}$ and the shaded region shows three standard deviations over 50 repetitions.

General post-processing procedure: definition

For each $f: \mathbb{R}^{p} \times[K] \rightarrow \mathbb{R}, s \in[K]$ and $i \in\left[2 N_{s}\right]$, define the following r.v.
$\tilde{f}_{i}^{s}:=f\left(\boldsymbol{X}_{i}^{s}, s\right)+\mathcal{U}([-\sigma, \sigma]) \quad$ and $\quad \tilde{f}(\boldsymbol{x}, s):=f(\boldsymbol{x}, s)+\mathcal{U}([-\sigma, \sigma]) \quad \forall \boldsymbol{x} \in \mathbb{R}^{p}$

Using the above quantities, we build the following estimators: for all $t \in \mathbb{R}$

$$
\begin{aligned}
& \hat{F}_{1, \nu_{s}^{f}}(t):=\frac{1}{N_{s}+1}\left(\sum_{i=1}^{N_{s}} \mathbb{1}\left\{\tilde{f}_{i}^{s}<t\right\}+\mathcal{U}([0,1])\left(1+\sum_{i=1}^{N_{s}} \mathbb{1}\left\{\tilde{f}_{i}^{s}=t\right\}\right)\right), \\
& \hat{F}_{2, \nu_{s}^{f}}(t):=\frac{1}{N_{s}} \sum_{i=N_{s}+1}^{2 N_{s}} \mathbb{1}\left\{\tilde{f}_{i}^{s} \leq t\right\} .
\end{aligned}
$$

Finally, for each $f: \mathbb{R}^{p} \times[K] \rightarrow \mathbb{R}$ we define an estimator of f_{0}^{*},

$$
\hat{\Pi}(f)(\boldsymbol{x}, s)=\sum_{s^{\prime}=1}^{K} w_{s^{\prime}} \hat{F}_{2, \nu_{s^{\prime}}^{f}}^{-1} \circ \hat{F}_{1, \nu_{s}^{f}} \circ \tilde{f}(\boldsymbol{x}, s), \quad \forall(\boldsymbol{x}, s) \in \mathbb{R}^{p} \times[K] .
$$

How fair/accurate is it?

General post-processing: fairness guarantees

Theorem (Demographic parity guarantee)
For any $f: \mathbb{R}^{p} \times[K] \rightarrow \mathbb{R}$, any joint distribution \mathbb{P} of (\boldsymbol{X}, S, Y) and any $\sigma>0$, it holds that
$\operatorname{Law}(\hat{\Pi}(f)(\boldsymbol{X}, S) \mid S=s)=\operatorname{Law}\left(\hat{\Pi}(f)(\boldsymbol{X}, S) \mid S=s^{\prime}\right) \quad \forall s, s^{\prime} \in[K]$.

General post-processing: estimation guarantees

Assumption
For all $s \in[K]$, the measures ν_{s}^{*} are supported on an interval in \mathbb{R}, admit density w.r.t. Lebesgue measure which is lower and upper bounded by $\underline{\lambda}_{s}>0$ and $\bar{\lambda}_{s}>0$ respectively.

Theorem (Estimation guarantee)

Let the above assumption and Assumption (A) hold. Then, for any base prediction rule $f: \mathbb{R}^{p} \times[K] \rightarrow \mathbb{R}$, any $\sigma \in(0,1)$ and any $q \in[1, \infty)$,

$$
\mathbf{E}\left\|\hat{\Pi}(f)-f_{0}^{*}\right\|_{q} \leq C_{\bar{\lambda}}^{q}\left(\left\|f-f^{*}\right\|_{q}+\min \left\{\left\|f-f^{*}\right\|_{q-1}^{1 / p}+\sigma^{1 / p},\left\|f-f^{*}\right\|_{\infty}+\sigma\right\} \mathbb{1}\{q>1\}\right.
$$

$$
\left.+\left\{\sum_{s=1}^{K} w_{s} N_{s}^{-1 / 2}\right\}+\left\{\sum_{s=1}^{K} w_{s} N_{s}^{-q / 2}\right\}^{1 / q}+\sigma\right)
$$

where $C_{\underline{\boldsymbol{\lambda}}}^{q}$ depends only on $\left(\underline{\lambda}_{s}\right)_{s},\left(\bar{\lambda}_{s}\right)_{s}, q \in[1, \infty)$ and ${ }^{1 / p}+1 / q=1$.

Thank you for your attention!

Questions?

Thank you for your attention! Questions?

- Our unfairness measure puts two conflicting quantities on the same scale: the risk-fairness trade-off is described by only one quantity.
- Minimax framework to study (relaxed) DP-fair estimators.
- Derived general problem-depend lower bound in this framework.
- Lower bound is tight for linear regression with systematic bias model.
- Only fair regression matters.

Thank you for your attention! Questions?

- Our unfairness measure puts two conflicting quantities on the same scale: the risk-fairness trade-off is described by only one quantity.
- Minimax framework to study (relaxed) DP-fair estimators.
- Derived general problem-depend lower bound in this framework.
- Lower bound is tight for linear regression with systematic bias model.
- Only fair regression matters.

Open questions: what about

- other models?
- other fairness constraints/relaxations?

Thank you for your attention! Questions?

- Our unfairness measure puts two conflicting quantities on the same scale: the risk-fairness trade-off is described by only one quantity.
- Minimax framework to study (relaxed) DP-fair estimators.
- Derived general problem-depend lower bound in this framework.
- Lower bound is tight for linear regression with systematic bias model.
- Only fair regression matters.

Open questions: what about

- other models?
- other fairness constraints/relaxations?

For more details:

- Evgenii Chzhen and Nicolas Schreuder (2022). "A minimax framework for quantifying risk-fairness trade-off in regression". In: The Annals of Statistics 50.4, pp. 2416-2442
- Solenne Gaucher, Nicolas Schreuder, and Evgenii Chzhen (2023). "Fair learning with Wasserstein barycenters for non-decomposable performance measures". In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2436-2459

Bibliography I

Barocas, Solon, Moritz Hardt, and Arvind Narayanan (2019). Fairness and Machine Learning. http://www.fairmlbook.org. fairmlbook.org.
Bertsimas, Dimitris, Vivek F Farias, and Nikolaos Trichakis (2012). "On the efficiency-fairness trade-off". In: Management Science 58.12, pp. 2234-2250.
Calders, T., F. Kamiran, and M. Pechenizkiy (2009). "Building classifiers with independency constraints". In: IEEE international conference on Data mining.
Chzhen, E et al. (2020). "Fair Regression with Wasserstein Barycenters". In: NeurIPS 2020.
Chzhen, Evgenii and Nicolas Schreuder (2022). "A minimax framework for quantifying risk-fairness trade-off in regression". In: The Annals of Statistics 50.4, pp. 2416-2442.
Fukuchi, Kazuto and Jun Sakuma (2022). "Minimax Optimal Fair Regression under Linear Model". In: arXiv preprint arXiv:2206.11546.
Gaucher, Solenne, Nicolas Schreuder, and Evgenii Chzhen (2023). "Fair learning with Wasserstein barycenters for non-decomposable performance measures". In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2436-2459.

Bibliography II

Haas, Christian (2019). "The price of fairness-A framework to explore trade-offs in algorithmic fairness". In.
Hardt, M., E. Price, and N. Srebro (2016). "Equality of opportunity in supervised learning". In: Neural Information Processing Systems.
Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan (2016). "Inherent trade-offs in the fair determination of risk scores". In: arXiv preprint arXiv:1609.0580\%.
Le Gouic, T., J.-M. Loubes, and P. Rigollet (2020). "Projection to Fairness in Statistical Learning". In: arXiv preprint arXiv:2005.11720.
Wick, Michael, Jean-Baptiste Tristan, et al. (2019). "Unlocking fairness: a trade-off revisited". In: Advances in neural information processing systems 32.
Zafar, Muhammad Bilal et al. (2017). "Fairness constraints: Mechanisms for fair classification". In: Artificial intelligence and statistics. PMLR, pp. 962-970.
Zliobaite, Indre (2015). "On the relation between accuracy and fairness in binary classification". In: arXiv preprint arXiv:1505.05723.

Barocas, Solon, Moritz Hardt, and Arvind Narayanan (2019). Fairness and Machine Learning. http://www.fairmlbook.org. fairmlbook.org.

Bibliography III

Bertsimas, Dimitris, Vivek F Farias, and Nikolaos Trichakis (2012). "On the efficiency-fairness trade-off". In: Management Science 58.12, pp. 2234-2250.
Calders, T., F. Kamiran, and M. Pechenizkiy (2009). "Building classifiers with independency constraints". In: IEEE international conference on Data mining.
Chzhen, E et al. (2020). "Fair Regression with Wasserstein Barycenters". In: NeurIPS 2020.
Chzhen, Evgenii and Nicolas Schreuder (2022). "A minimax framework for quantifying risk-fairness trade-off in regression". In: The Annals of Statistics 50.4, pp. 2416-2442.
Fukuchi, Kazuto and Jun Sakuma (2022). "Minimax Optimal Fair Regression under Linear Model". In: arXiv preprint arXiv:2206.11546.
Gaucher, Solenne, Nicolas Schreuder, and Evgenii Chzhen (2023). "Fair learning with Wasserstein barycenters for non-decomposable performance measures". In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2436-2459.
Haas, Christian (2019). "The price of fairness-A framework to explore trade-offs in algorithmic fairness". In.

Bibliography IV

Hardt, M., E. Price, and N. Srebro (2016). "Equality of opportunity in supervised learning". In: Neural Information Processing Systems. Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan (2016). "Inherent trade-offs in the fair determination of risk scores". In: arXiv preprint arXiv:1609.0580\%.
Le Gouic, T., J.-M. Loubes, and P. Rigollet (2020). "Projection to Fairness in Statistical Learning". In: arXiv preprint arXiv:2005.11720.
Wick, Michael, Jean-Baptiste Tristan, et al. (2019). "Unlocking fairness: a trade-off revisited". In: Advances in neural information processing systems 32.
Zafar, Muhammad Bilal et al. (2017). "Fairness constraints: Mechanisms for fair classification". In: Artificial intelligence and statistics. PMLR, pp. 962-970.
Zliobaite, Indre (2015). "On the relation between accuracy and fairness in binary classification". In: arXiv preprint arXiv:1505.05723.

[^0]: Assumption (A)
 The group-wise prediction distributions $\operatorname{Law}\left(f^{*}(\boldsymbol{X}, S) \mid S=s\right)$ have finite second moment and are non-atomic for any s in \mathcal{S}.

