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Abstract

Lecture notes for the Geometry, Mechanics and Control 8th Intl. Young
Researchers Workshop 2013 held in Barcelona. This document presents
the mathematical framework that has been developed in the field of com-
putational anatomy in the last fifteen years. We will focus in particular on
the use of right-invariant metrics on diffeomorphism groups and its recent
developments.

1 Introduction

One goal of Computational Anatomy is to develop quantitative tools to study
the statistical variability of anatomical shapes and help the practitioner with the
diagnosis. Underlying this approach, there is a constitutive hypothesis which
is that pathologies can be detected out of images of organs. It is known that
pathologies such as Alzheimer disease entails a decay of the hippocampi (some
part of the brain). Going beyond the change of global indicators (such as vol-
ume) by using the whole geometrical information might improve the results of
statistical studies [LAFP11].

The mathematical modeling of shapes is far from being new and D’Arcy
Thompson was probably the first to introduce the idea of studying their vari-
ability through an underlying deformation of a template (an average shape).
Due to the increase of medical imaging data in the last twenty years, there was
a need to develop quantitative methods applying such kind of ideas. To this
end, Grenander laid down the fundations of pattern theory [Gre93, GM98]. It
was further developed and implemented by Miller, Trouvé and Younes [Tro95,
BMTY05, JM00, MTY06, YAM09]. In this note, we give a short introduction to
this area from a mathematical point of view. This note is based on many sources
but in particular [BH13, BMTY05, MG13, TV12]. There has been many other
works in Computational Anatomy that we do not present/cite in this document.
We hope that this note will give a short path to enter the field for the interested
reader.

2 Diffeomorphic image matching

Even before being interested by a statistical description of shape variability, a
problem of interest in medical imaging consists in registering two biomedical
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images. The main application is the to establish correspondences between dif-
ferent image acquisitions. In the rest of these notes, an image will be modeled
as a scalar valued function defined on a domain (smooth domain) Ω ⊂ Rd with
d = 2, 3. Finding correspondences between two images may or may not be sym-
metric with respect to the given images (for example, one image is noisy and
the other is not so that their role in the registration may not be symmetric).
Standard approaches for registration distinguish the given images: there is the
source image I that will be deformed by a map ϕ : Rd → Rd, the deformed im-
age is I ◦ ϕ−1. The other image J will be called the target image. For concrete
applications in biomedical imaging, constraints have to be imposed on the trans-
formation ϕ. A usual constraint is to require that ϕ is invertible and preserves
the topology: it is a priori difficult to make sense of folding or collapsing tissues.
In particular, diffeomorphisms of the domain satisfy this condition. Due to noise
or difference in acquisition modalities, there is in general no transformation ϕ
such that the deformed source image denoted by ϕ · I is equal to J . And if,
by chance, there exists such a transformation, it may not be unique. From a
computational viewpoint, solving for ϕ the equation I ◦ϕ−1 = J is usually done
via an optimization problem on the set of transformations denoted by S:

argminϕ∈S d(I ◦ ϕ−1, J)

where d is a function satisfying d(I, J) = 0 =⇒ I = J , such as a distance. In
general, the first remark on the existence of ϕ implies that this minimization
will not have a solution on S but this solution might exist on a bigger space. A
practical solution for ill-posed inverse problems consists in adding a regulariza-
tion term on the deformation, that penalizes ”weird” deformations. The new
minimization problem is then

J (ϕ) = V (ϕ) + d(I ◦ ϕ−1, J) , (1)

where V (ϕ) is the ”cost” associated with the deformation ϕ. With respect to the
previous issues (existence and uniqueness), existence is obtained and also, most
of the time, a generic uniqueness. Almost all (if not all) registration methods can
be formulated as the minimization of a functional of type (1). Remark that, on
purpose, we did not specify the domain for the optimization of the functional J .
Indeed, at this level of generality, one can incorporate the domain constraint
in the function V , e.g. V (ϕ) if ϕ /∈ S. In particular, the function V may
include a prior knowledge on the space of admissible deformations, as well as
statistical informations on the deformations: An idealized situation would be
the following, the distribution of deformations among a population is known a
priori so that it makes sense to use V (ϕ) = −d(ϕ) or V (ϕ) = − log(d(ϕ)), which
would correspond to likelihood or log-likelihood maximisation.

In the situation where no prior information is available and the only con-
straint is the diffeomorphic one, different methods have been proposed to address
it: generate diffeomorphisms (1) using the Lie-exponential, i.e. flows of vector
fields constant in time and (2) using time-dependent vector fields.
For (1), the Lie-exponential introduces a regularization on the Lie algebra on
the velocity field

V (ϕ) :=
1

2
‖v‖2V

where V is a Hilbert space of smooth vector fields and ϕ is determined by v
by the following autonomous ode: ∂tϕ(t) = v ◦ ϕ(t). It is well-known that the
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Lie exponential is not surjective in infinite dimension: an example is given in
[KW09] on Diff(S1).
For (2), the regularization is given by

V (ϕ) :=
1

2

∫ 1

0

‖vt‖2V dt

where ∂tϕ(t) = vt ◦ ϕ(t) is the equation that determines ϕ for a given time
dependent vector field vt.

While the former approach is more computationnally demanding than the
latter, yet it enjoys more mathematical properties that matter for applications.
Thus, the mathematical framework for time-dependent flows will be presented
in the next section. It is sometimes called LDDMM (Large Deformation Diffeo-
morphic Metric Mapping).

Plan of the note: After the construction of the group following Trouvé
[Tro95] in SectionFlows, we present the convenient property of normal metrics
on the space of shapes in Section 2.2. We then present the LDDMM regis-
tration method in the case of images in Section 2.3 and the link with EPDiff
equation. We discuss the construction and the choice of inner product on V in
section 3 and some developments on the similarity measure (as important as the
deformation energy) in Section 4. In Section 5, we give a very brief overview
of statistical tools on Riemannian manifolds and their development in the LD-
DMM framework. The end of the note is concerned with other models that are
either new or not widely used in practical applications.

2.1 Flows and groups of diffeomorphisms

In order to have a well-defined flows of diffeomorphisms, it is convenient to work
with vector fields that belong to C1(Ω,Rd). In what follows, we will denote by
V a space of (sufficiently smooth) vector fields. To be precise, we define the
notion of admissibility for a linear space of vector fields:

Definition 2.1 (Admissible space of vector fields). A separable Hilbert
space of vector fields V defined on Ω is said admissible if

• for any v ∈ V , v(x) = 0 and dv(x) = 0 if x ∈ ∂Ω.

• There exists a constant K such that, for all v ∈ V

‖v‖1,∞ ≤ K‖v‖V (2)

where ‖v‖1,∞ denotes the sup norm of v and its first derivative and ‖ · ‖V
denotes the given Hilbert norm on V .

A well-known example of such a space is Hs(Ω,Rd) for s > d/2 + 1. More
generally, the Rellich-Kondrachov theorem states that W j+m,p(Ω) ↪→ Cj(Ω) for
mp > d. We refer the reader to Section 3 which will present an efficient way of
constructing such spaces. We then have:

Proposition 2.2. Let v ∈ L1([0, 1], V ) be a time dependent vector field and
consider the Banach space B0 (where Bi := Ci(Ω,Rd) endowed with the sup
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norm ‖ · ‖i,∞ of the first i derivatives). There exists a unique solution ϕ ∈
W 1,1([0, 1], B) to the flow equation{

∂tϕ(t) = v(t) ◦ ϕ(t)

ϕ(0) = Id .
(3)

In addition, ϕ(Ω) ⊂ Ω.

We will also denote ϕ(t) and v(t) by ϕt and vt.

Proof. Since V is admissible, v ∈ L1([0, 1], V ) implies v ∈ L1([0, 1], B) and v
is a L1−Lipschitz function from I × B to B. The first part of the proposition
follows from Theorem B.3.

The fact that ϕ(Ω) ⊂ Ω is a direct consequence of uniqueness of solutions:
if for some t ∈ [0, 1], ϕt(x) ∈ ∂Ω, it implies that for all t ∈ [0, 1], ϕt(x) ∈ ∂Ω.
Indeed the first point of the proposition applies not only to a domain but also
for any compact sets and thus for Ω = {x}. In this case, the soluton is φt(x) = x
since the boundary condition is vt(x) = 0.

In fact, we can improve the smoothness of ϕ.

Theorem 2.3. Let v ∈ L1([0, 1], V ) be a time dependent vector field and B :=
C0(Ω,Rd) endowed with the sup norm. The solution ϕ(t) is a continuous path in

Diff1(Ω), the space of C1 diffeomorphisms satisfying ‖Dϕ(t)‖∞ ≤ e
∫ t
0
K‖v(t)‖ dt.

Proof. Let us first assume that v ∈ L1([0, 1], B2), then Theorem B.3 implies that
ϕ is in W 1,1([0, 1], B1). Looking at the equation defining Dϕ by differentiating
the flow equation, we have:

∂tDϕt = Dvt ◦ ϕt ·Dϕt (4)

This ode is again a Caratheodory differential equation on C0(Ω, L(Rd,Rd))
endowed with the sup norm.

We now consider an approximation of vn of v ∈ V by vector fields in
L1([0, 1], B2). Using Proposition 2.2, we get that the solution ϕn is well-
defined. Moreover, by a direct application of the dominated convergence the-
orem t → Dvn(t) ◦ ϕn(t) converges in L1 to Dv(t) ◦ ϕ where ϕ is the flow of
v. Finally, applying Proposition B.5, the solution Dϕn uniformly converges to
Dϕ. Since the space B1 is complete, ϕ belongs to B1.

In fact, ϕ is a diffeomorphism since its inverse is given by the flow of t →
−v(1 − t) and the last inequality is derived from equation (4) and Gronwall’s
lemma B.4.

Remark 2.4. We can observe that

1. The solution is in fact absolutely continuous,

2. the previous proposition can be extended to smoother vector fields. The
flow of Bk vector fields will be Ck and the inequality (2.3) can be gener-
alized to higher derivatives.
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One can relax the assumption v ∈ Bi and replace it with v ∈ L2([0, 1], Hs)
where Hs is the Sobolev space of order s. It can be proven that for s > d/2 + 1,
the flow of v is an absolutely continuous path in Hs. The case s > d/2+2 follows
as in Proposition 2.2, and the other cases require approximation arguments. The
proof of this can be found in [BV13].

We are now in position of formulating a well-posed variational problem that
solves the diffeomorphic image matching problem using time dependent vector
fields:

Theorem 2.5. Let I, J ∈ L2(Ω,R) and V be an admissible space of vector
fields. The functional

J (v) =

∫ 1

0

‖v(t)‖2V dt+ ‖I ◦ ϕ−1 − J‖2L2 , (5)

attains its infimum on L2([0, 1], V ).

Proof. The first term
∫ 1

0
‖v(t)‖2V dt is a norm on a Hilbert space, so that it

is lower semi-continuous w.r.t. the weak convergence. Since V is separable,
L2([0, 1], V ) is also separable so that bounded balls are compact for the weak
topology. The existence of a minimizer for J follows from the continuity of the
flow on B0 w.r.t. the weak topology, which is proven in the next lemma. Indeed,
if I is a Lipschitz function, then ‖I ◦ϕn−I ◦ϕ‖∞ ≤ Lip(I)‖ϕn−ϕ‖∞ so that the
result is clear. The more general case I ∈ L2 follows via the application of the
dominated convergence theorem using approximations by Lipschitz functions
and the fact that Jac(ϕn) is bounded in L∞(Ω,R).

Remark 2.6. In fact, the previous theorem is true for any similarity measure
that is lower semi-continuous w.r.t. to the weak topology. Using the following
lemma, are available similarity measures such as:

∑k
i=1 ‖ϕ(qi) − xi‖2 where qi

and xi are two given sets of points.

Lemma 2.7. The flow map Φ : L2([0, 1], V ) → B0 defined by Φ(v) = ϕ(1) is
continuous for the weak topology on L2([0, 1], V ).

Proof. For any x ∈ Ω, we have

‖ϕnt (x)− ϕt(x)‖ ≤
∥∥∥∥∫ t

0

vns (ϕns (x))− vs(ϕs(x)) ds

∥∥∥∥
≤
∫ t

0

‖vns (ϕns (x))− vns (ϕs(x))‖ ds+

∥∥∥∥∫ t

0

vns (ϕs(x))− v(ϕs(x)) ds

∥∥∥∥ .
Remark that the second term can be written as ‖mx(vn)−mx(v)‖ where

mx(v) :=

∫ t

0

vs(ϕs(x)) ds , (6)

which is a continuous linear form on L2([0, 1], V ). In addition, the family mx

are equicontinuous w.r.t. x ∈ Ω. Indeed,

‖mx(v)−my(v)‖ ≤
∫ t

0

‖vs(ϕs(x))− vs(ϕs(y))‖ ds
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≤
∫ t

0

K‖vs‖V ‖ϕs(x)− ϕs(y)‖ ds

≤ K ′
∫ t

0

‖vs‖V ‖x− y‖ ds

≤ K ′
√
t ‖x− y‖‖v‖L2([0,1],V ) .

In particular, uniform convergence w.r.t. x ∈ Ω is obtained, i.e.

lim
n→∞

sup
x∈Ω

∥∥∥∥∫ t

0

vns (ϕs(x))− v(ϕs(x)) ds

∥∥∥∥ = 0 .

Going back to the first inequality, we get, since vn is a bounded sequence,

‖ϕnt (x)− ϕt(x)‖∞ ≤ αn(t) + ‖ϕnt (x)− ϕt(x)‖∞
∫ t

0

K‖vn(s)‖V ds ,

where αn(t) = supx∈Ω ‖
∫ t

0
vns (ϕs(x))− v(ϕs(x)) ds‖. The conclusion follows by

application of Gronwall’s lemma B.4.

A consequence of the previous lemma is the following theorem that can be
found in [Tro95] or [You08],

Theorem 2.8 (Trouvé). The image of the map Φ (i.e. all the flows at time 1)
is a group of C1 diffeomorphisms.The distance defined on this group denoted by
GV by

d(ϕ,ψ) := inf{‖v‖L2([0,1],V ) |Φ(v) ◦ ϕ = ψ} (7)

makes the group a complete metric space and there exists a minimizing vector
field realizing the distance between two given ϕ and ψ.

Proof. There is only one important point in proving that d is a distance:

d(ϕ,ψ) = 0 =⇒ ϕ = ψ .

Let us consider ϕ 6= ψ then there exists x ∈ Ω such that ϕ(x) 6= ψ(x) and
consider a path ϕs joining ϕ to ψ. We thus have

‖ϕ(x)− ψ(x)‖ ≤
∫ 1

0

‖vs(ϕs(x))‖ ds ≤
∫ 1

0

K‖vs‖V ds ≤ ‖v‖L2([0,1],V ) (8)

and it follows that d(ϕ,ψ) ≥ 1
K ‖ϕ(x)− ψ(x)‖ > 0.

The existence of a minimizer follows as in the previous theorem: if vn ∈
L2([0, 1], V ) is a minimizing sequence satisfying the boundary conditions Φ(vn)◦
ϕ = ψ, by weak compactness of bounded balls, there exists a subsequence of
vn that weakly converges to v. By lower semi-continuity of the norm, v is a
minimizer provided that Φ(v) ◦ ϕ = ψ which is true by the previous lemma.

Let us show that GV is a complete metric space: Consider ϕn a Cauchy
sequence such that d(ϕn, ϕn+1) ≤ 1/2n, it is thus possible to concatenate the
minimizing vector fields un between ϕn and ϕn+1 to obtain a vector field u∞ ∈
L2([0, 1], V ). It is easy to prove that its flow ϕ∞ is the limit of ϕn. For a general
Cauchy sequence, there exists a subsequence sqtisfying the above condition.
This subsequence converges and consequently, the sequence as well.
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Remark 2.9. If the metric is not strong enough then this lower bound may
vanish. For instance, the L2 right-invariant metric gives a degenerate distance
on the group of diffeomorphisms [MM05, BBHM12]. In fact, on S1 the Hs right-
invariant distance is known to be degenerate for s ≤ 1/2, which is the critical
index: If s > 1/2, the distance is not degenerate [BBHM13]. In addition, it is
not degenerate for s ≥ 1 in any dimension [MM05]. It is an open question to
know what is the critical index for Rd where d ≥ 2.

Remark 2.10. Following the proof of theorem (2.3), it can be proven that
GHs(Rd) ⊂ {Id +f | f ∈ Hs(Rd)} for s > d/2 + 2. The case s > d/2 + 1 is more
involved. In this case, the group GHs(Rd) is an open set of an affine space on

Hs(Rd) and thus inherits a smooth manifold structure. It is not known if GV
has a natural differentiable structure for a general V . In the case of Gaussian
kernels (see Section 3) It is probably an ILH-Lie group as defined by Omori
[Omo74].

Relation to Lie groups. The group GV constructed above is not a Lie group:
Indeed, the tangent space at Id is not closed with respect to the Lie bracket.
For instance, two vector fields in Hs have their Lie bracket in Hs−1 in general.
A general result by Omori [Omo78] states that:

Theorem 2.11. If a connected Banach-Lie group G acts effectively, transitively
and smoothly on a compact manifold, then G must be a finite dimensional Lie
group.

However, important structures are still available. For instance, GHs carries
a smooth Riemannian structure:

Theorem 2.12. For s > d/2+1, the group GHs is an infinite dimensional Rie-
mannian manifold modelled on Hs, which is metrically complete and geodesically
complete. In addition, between any two diffeomorphisms in GHs , there exists a
minimizing geodesic. This minimizing geodesic is unique on a Gδ dense subset.

The proof of this theorem can be found in [BV13]. This result is based on
[EM70, TY05, Eke] and it improves a bit Theorem 9.1 in [MP10].

In what follows, we will need the definition of the Lie exponential:

Definition 2.13. The Lie-exponential map

exp : V 7→ GV (9)

is defined for any v ∈ V by the flow at time 1 of the (constant) time dependent
vector field v(t) = v.

In particular, the exponential curve t → exp(tv) is a C1 curve on B1(=
C1(Ω,Rd)) and

d

dt

∣∣∣∣
t=0

exp(tv) = v .
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2.2 Right-invariant metric and left action

An important feature of the formulation (5) is that the right-invariant metric on
the group descends to a Riemannian metric on the orbits of shapes. Such metrics
are sometimes called normal metrics. By shape, we mean a mathematical object
on which the diffeomorphism group acts in a smooth way: For instance, an
embedding of S1 or S2 in R3, or even simpler a function in L2(S1,R2) and the
associated action is the composition on the left by the diffeomorphism.

Group actions. Let GV be a group which is a manifold with a tangent space
at Id denoted by V , acting from the left on a manifold Q. We denote the action
by

Φ : G×Q→ Q , (g, q) 7→ g · q := Φg(q). (10)

We will assume that this map is C1. Being a left action means that Φ satisfies
g1 · (g2 · q) = (g1g2) · q and Id ·q = q for any q ∈ Q and g1, g2 ∈ G.

A natural candidate for a metric on Q induced by the right-invariant metric
is the following: Let q1, q2 ∈ Q be two given points, the induced distance is the
following

d(q1, q2) = inf{d(Id, ϕ) |ϕ ∈ GV s.t. ϕ · q1 = q2} .
This distance may be degenerate, i.e. d(q1, q2) = 0 does not imply q1 = q2.

Example 2.14. Let ϕ,ψ ∈ Diff∞(Rk), and d the right invariant metric asso-
ciated to H1(Rk). If Q = Ln := {(q1, . . . , qn) ∈ [Rk]n | qi 6= qj for i 6= j}, then
the induced distance is degenerate. Note however that the distance between two
diffeomorphisms does not vanish as proven in [MM05].

In what follows, we will be interested by non-degenerate distances and more
than that, those that are Riemannian. Therefore, we look at the infinitesimal
behaviour of the action and we will assume some smoothness hypothesis.

The infinitesimal generator of the action corresponding to ξ ∈ V is the vector
field on Q given by

ξQ(q) :=
d

dt

∣∣∣∣
t=0

exp(tξ) · q = ξ · q . (11)

We will essentially use the notation ξ ·q for the infinitesimal action. The tangent
lift of Φ is defined as the action of G on TQ,

G× TQ→ TQ, (g, vq) 7→ gvq := TΦg(vq), (12)

with infinitesimal generator ξTQ corresponding to ξ ∈ V . Note that we have
the relation

TτQ(ξTQ(vq)) = ξQ(q), (13)

where τQ : TQ→ Q is the tangent bundle projection. Similarly, one defines the
cotangent lifted action as

G× T ∗Q→ T ∗Q, (g, αq) 7→ gαq := (TΦg−1)∗(αq). (14)

The momentum map J : T ∗Q → V ∗ associated with the cotangent lift of Φ is
given by

〈J(αq), ξ〉V ∗×V = 〈αq, ξ · q〉T∗Q×TQ , (15)
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for arbitrary αq ∈ T ∗Q and ξ ∈ V . Using the definitions above, one has the
important property that

J(gαq) = Ad∗g−1 J(αq) . (16)

In the previous formula, we used Adg : V 7→ C0(Ω,Rd) defined by

Adg(v) = Tg(v ◦ g−1) . (17)

This map is the differential at Id of the left action of GV on itself defined by
conjugation

Adg h = ghg−1 . (18)

The adjoint of Ad is defined by

Adg(w) = Tg∗(w ◦ g) Jac(g) , (19)

which satisfies
〈w,Adg(v)〉L2 = 〈Ad∗g(w), v〉L2 . (20)

In a smooth setting, we have, if ∂tg(t) = vt ◦ g(t),

∂t Adg(w) = advt Adg(w) (21)

∂t Ad∗g−1(w) = − ad∗vt Ad∗g−1(w) (22)

and adv w = v · w − w · v = Dv(w)−Dw(v).

Normal metrics. We now consider an action which is transitive on a smooth
manifold Q and consider a right-invariant Riemannian metric γ on the group
G. By right-invariance, the metric g is completely determined by its evaluation
at identity γ(Id)(·, ·).

γ(g)(X,Y ) = γ(Id)(X ◦ g−1, Y ◦ g−1) . (23)

We will sometimes use the following notation, for ξ ∈ V , 〈ξ, ξ〉 = ‖ξ‖2V = ‖ξ‖2 =
γ(Id)(ξ, ξ) and name it the norm on the Lie algebra (even it is not striclty
speaking a Lie algebra). We are interested in the natural metric induced by the
action of G on Q defined as follows:

Definition 2.15. For a given transitive left action Φ : G × Q → Q such that
the map E : (q, v) ∈ Q × V → (q, v · q) ∈ TQ is a smooth (vector bundle)
submersion, the normal metric associated with the right-invariant metric γ is
the Riemannian metric on Q defined by

γ(q)(vq, vq) := min{1

2
‖ξ‖2V | ξ ∈ V s.t. ξ · q = vq} . (24)

The vertical subspace at point q is defined as Fq := kerE(q, ·) which is a closed
subspace of V and its orthogonal subspace Hq := F⊥q is the horizontal subspace
at point q. We denote by Lq : TqQ 7→ Hq the pseudo-inverse of TEq.

Proof. The minimum in the definition is indeed a minimum since for any ξ ∈ V
such that ξ ·q = vq the minimum of (24) is attained for the orthogonal projection
of ξ on Hq. Indeed, Svq := {ξ | ξ · q = vq} is a closed affine subspace of V of
associated linear subspace Fq so that there exists an element of Svq of minimal
norm by the Hilbert projection theorem. What remains to be checked is that
the Riemannian structure is smooth which is the case since the map E is a
submersion.
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Note that by construction, (kerTπq0)⊥ 7→ TQ is an isometry since

(kerTπq0)⊥ = {δg | 〈δgg−1, v〉 = 0 for all v ∈ V s.t. v · (g · q0) = 0} = Hq .

In particular, we get

Proposition 2.16. Let q0 ∈ Q be a given point, then the map πq0 : G → Q
defined by πq0(g) = g · q is a Riemannian submersion.

Remark 2.17. Even if the manifold structure on the group may not be known,
the normal metric might be a smooth Riemannian metric. Therefore, instead
of proving a general theorem, it is sometimes a better path to write explicitely
the metric in coordinates and check if it is smooth.

Definition 2.18 (Horizontal lift of paths). Let π : M 7→ B be a Riemannian
submersion, a ∈ M and x : [0, 1] 7→ B be a differentiable curve. There exists a
unique path denoted x̃ : [0, 1] 7→ M such that x̃(0) = a and π ◦ x̃ = x defined
by ∂tx̃ = Lq(∂tx).

Remark 2.19. The lengths of x̃ and x are equal, this can replace the differential
equation in the definition. This notion is similar to horizontal lifting on principal
bundles.

Proposition 2.20. Let q0, qtarget ∈ Q and dQ a distance on Q. Minimizing

J (v) =

∫ 1

0

1

2
‖v(t)‖2V dt+ dQ(ϕ · q0, qtarget) , (25)

reduces to minimizing

J (q) =

∫ 1

0

1

2
γ(q)(q̇, q̇) dt+ dQ(q(1), qtarget) . (26)

The corresponding optimal solution of (25) is obtained by horizontal lift of the
optimal solution of (26).

This property is actually very important when the dimension of Q is small.
For instance, in the case of points matching or curve matching the dimensionality
of the optimization problem is reduced to a few thousands. Clearly, it is of
practical importance to write explicitely γ(q).

Proposition 2.21. The cometric γ(q)−1 can be written as:

γ(q)−1(p, p) =
1

2
‖J(p, q)‖2V ∗ . (27)

Proof. Exercise left to the reader.

Applications to group of points (also called landmarks): The manifold
of landmark is an open set of Ωn defined by

Ln := {(q1, . . . , qn) ∈ Ωn | qi 6= qj for i 6= j} .

It is a connected manifold if d ≥ 2. It is probably the simplest case of application
where the action is defined by

(g, (x1, . . . , xn)) 7→ (g(x1), . . . , g(xn))
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and the infinitesimal action is thus

v · (x1, . . . , xn) 7→ (v(x1), . . . , v(xn)) .

The momentum map is thus in coordinates

(x1, . . . , xn), (p1, . . . , pn) ∈ T ∗Q 7→
n∑
i=1

δpixi
∈ V ∗ . (28)

Note that if V is an admissible space of vector fields, this application is well
defined since Dirac operators belong to V ∗. The tangent action is simply:

g · (x1, . . . , xn), (v1, . . . , vn) 7→ (g(x1), . . . , g(xn)) , (Tgx1
(v1), . . . , T gxn

(vn)) .

and the co-tangent action is:

g · (x1, . . . , xn), (p1, . . . , pn) 7→ (g(x1), . . . , g(xn)) ,
(
Tg−1∗

x1
(p1), . . . , T g−1∗

xn
(pn)

)
.

Since V is a reproducing kernel Hilbert space (see Section 3), there exists a
kernel k such that (δpx, v)V ∗,V = 〈k(., x)p, v〉V . In particular, we have, for q =
(x1, . . . , xn) and p = (p1, . . . , pn),

1

2
‖J(p, q)‖2V ∗ =

1

2

n∑
i,j=1

〈pi, k(xi, xj)pj〉 . (29)

The optimal solutions for the minimization problem (26) satisfy the Hamil-
tonian equations:{

ṗi = −∂qiH(p, q) = −
∑n
j=1〈pi, ∂1k(qi, qj)pj〉

q̇i = ∂piH(p, q) =
∑n
j=1 k(qi, qj)pj ,

(30)

where

H(p, q) =
1

2

n∑
i,j=1

〈pi, k(xi, xj)pj〉 .

Note that ∂pH(p, q) =
∑n
j=1 k(qi, qj)pj which is simply the evaluation at point

qi of the vector field v(x) =
∑n
j=1 k(x, qj)pj .

Proposition 2.22. The landmark space Ln is a complete Riemannian manifold.
In other words, solutions to System (30) are defined for all time.

Proof. Denote ϕ the horizontal lift of (p, q) to GV , i.e. the flow of the time de-
pendent vector field KJ(p(t), q(t)). Since the Hamiltonian function is constant
along a solution, it means that d2(Id, ϕ(t)) ≤ cste t. Using the bounds on the
flow 2.3, it implies that (p, q) stays in a compact set of T ∗Ln for t bounded.
Thus the solutions can be extended for all time.

Remark 2.23 (Peakons). Note that the above result does not apply to the
kernel associated with the H1 norm k(x, y) = e−‖x−y‖/σ Id. Indeed, H1 can
not be continuously embedded in C1 endowed with the sup norm, whatever the
dimension. Solutions to System 30 for this particular kernel are called peakons
[Hol09]. The Riemannian submersion approach still applies but the normal
metric does not make Ln a complete Riemannian manifold.
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Solving problem (26) is of course not reduced to an initial value problem
(30). The optimization problem is reduced to:

Proposition 2.24. Solving (26) is equivalent to minimize:

J (p(0)) = H(p(0), q(0)) + dQ(q(1), qtarget) (31)

over p(0) ∈ Tq(0)Q where q(1) is the solution of the Hamiltonian equations (30).

Proof. Remark that the Hamiltonian function is constant along optimal solu-
tions so that the first term in (26) can be replaced with H(p(0), q(0)).

Numerically solving this problem is often called a shooting optimization
method. Such an approach is developped in the case of images in [VRRC12] and
the code is freely available at https://sourceforge.net/projects/utilzreg/.

2.3 A steepest gradient descent algorithm

The optimization problems (25) or (26) are solved via standard methods of
differentiable nonlinear optimization such as steepest descent methods. In
this section, we follow the lines of [BMTY05]. The code of the associated
gradient descent algorithm is freely available at https://sourceforge.net/

projects/utilzreg/. The first thing we need is the computation of the gra-
dient of the functional w.r.t. v ∈ L2([0, 1], V ). The differentiation of the first
term is straightforward whereas the differentiation of the similarity measure is
more involved: It is sufficient to compute the variation of the flow ϕ(1) w.r.t.
v ∈ L2([0, 1], V ).

Lemma 2.25. Let u, v ∈ L2([0, 1], V ) and ϕu+εv(t) be the flow at time 1 of the
time dependent vector field u+ εv. We also denote by ϕ(t) the flow of u(t) and
ϕs,t = ϕ(t)ϕ(s)−1. Then,[

d

dε

∣∣∣∣
ε=0

ϕu+εv(t)

]
ϕ(t)−1 =

∫ t

0

Adϕs,t
(v(s)) ds . (32)

Proof. Write the tangent linear model, with δϕ(t) = d
dε

∣∣
ε=0

ϕu+εv(t),

∂tδϕ(t) = vt(ϕ(t)) + dut(ϕ(t))δϕ(t) . (33)

Equation (33) is a Caratheodory ode on B0 and solutions exists for all time
t ∈ [0, 1]. By the continuity of solutions w.r.t. pertubations (Proposition B.5),
it is sufficient to prove (32) on a dense subset of vector fields. We can thus work
in a smooth setting. Compose by ϕ(t)−1 on the right of (33) to get,

∂tδϕ(t)ϕ(t)−1 = v(t) + du(t)δϕ(t)ϕ(t)−1 , (34)

and explicit the first term on the ”Lie algebra” as follows, denoting w(t) =
δϕ(t)ϕ(t)−1,

∂t
(
δϕ(t)ϕ(t)−1

)
= ∂tδϕ(t)ϕ(t)−1 + dδϕ(t)∂tϕ(t)−1

∂tw(t) = v(t) + du(t)δϕ(t)ϕ(t)−1 − dδϕ(t)dϕ(t)−1u(t)

= v(t) + du(t)w(t)− dw(t)u(t)

12



= v(t) + adu(t) w(t) .

Using the fact that for a smoothly time dependent w(t) ∈ V ,

d

dt
Adϕ(t)−1(w(t)) = Adϕ(t)−1 ∂tw(t)−Adϕ(t)−1 [adu(t) w(t)] , (35)

we have
d

ds

∣∣∣∣
s=t

Adϕ(s)−1(w(s)) = Adϕ(t)−1 v(t) . (36)

Formula (32) is obtained by integration.

Proposition 2.26. The gradient of the functional (25) is given by

∇uJ (t) = u(t) +K Ad∗ϕt,1

(
J(αq(1))

)
, (37)

where αq(1) := ∂q
∣∣
q=φ1·q0

d(q, qtarget) and K denotes the isomorphism from V ∗

to V (implicitely defined by equation (39)). Equivalently,

∇uJ (t) = u(t) +KJ(ϕ1,tαq(1)) . (38)

Proof. The first term u(t) comes from the differentiation of 1
2‖u(t)‖2. The

differentiation of second term with respect to ϕ(1) can be written as

δεd(ϕ1 · q0, qtarget) = ∂q|q=ϕ1·q0 d(q, qtarget)(δεϕ(1) · q0)

and now write δεϕ(1) · q0 = δεϕ(1)ϕ(1)−1ϕ(1) · q0 so that

δεd(ϕ1 · q0, qtarget) = ∂q|q=ϕ1·q0 d(q, qtarget)

(∫ 1

0

Adϕs,1(v(s)) ds · q(1)

)
.

We have

δεd(ϕ1 · q0, qtarget) = ∂q|q=ϕ1·q0 d(q, qtarget)

(∫ 1

0

Adϕs,1
(v(s)) ds · q(1)

)
,

and finally,

δεd(ϕ1 · q0, qtarget) =

∫ 1

0

〈
Ad∗ϕs,1

(
J(αq(1))

)
, v(s)

〉
V ∗,V

ds .

This concludes the proof of the first equality by putting the two the terms
together and using the fact that for any m ∈ V ∗ and u ∈ V ,

〈m,u〉V ∗,V = 〈Km,u〉V . (39)

Using the equivariance property (16), we get the result.
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A formal optimal control approach: In what follows, we retrieve the pre-
vious formulas using an optimal control approach, i.e. by a formal application
of the Pontryagin Maximum Principle (PMP). This derivation can be made rig-
orous. The minimizers of Functional (25) are critical points of the augmented
functional

J (v, p, q) =

∫ 1

0

1

2
‖v(t)‖2V dt+dQ(ϕ ·q0, qtarget)+

∫ 1

0

(p(t), q̇ − v · q)T∗
q Q,TqQ

dt ,

(40)
which leads to the Euler-Lagrange equations:

q̇ = v(t) · q(t)
ṗ = −v∗(t) · p(t)
v(t) = KJ(p(t), q(t)) ,

(41)

where we used the notation −v∗(t) · p(t) := −dv∗(q(t))(p(t)) which is the in-
finitesimal coadjoint action. The gradient of Functional (25) can be written
as:

∇J (t) = v(t)−KJ(p(t), q(t)) , (42)

where q(t) solves the forward flow equation q̇ = v(t) · q(t) with q(0) = q0 and
p(t) solves the adjoint equation

ṗ = −v∗(t) · p(t) , (43)

with the boundary condition p(1) = [∂q]q=q(1)dQ(q(1), qtarget). In particular,
one has to solve the adjoint equation backward in time.

This formulation is particularly convenient for deriving optimality condi-
tions. It is also possible to introduce additional constraints in this setting, such
as constant volume for the shape.

Proposition 2.27. If (p(t), q(t)) ∈ T ∗Q is a solution to System (41), then
m(t) = J (p(t), q(t)) is a solution to the EPDiff equation

∂tm(t) + ad∗Km(t)m(t) = 0 . (44)

Proof. By differentiation, we have,

d

dt
(J(p(t), q(t)), w)V ∗,V = (ṗ, w · q) + (p, w · q̇)

= (−dv∗(q(t))(p(t)), w · q) + (p, dw(v) · q)
= (p(t),−dv(t)(w) · q(t)) + (p(t), dw(v(t)) · q(t))
=
(
p(t),− adv(t)(w) · q(t)

)
=
(
− ad∗v(t) J(p(t), q(t)), w

)
V ∗,V

which gives the result.

Remark 2.28 (Extension of geodesics). Note that this derivation stays at
a formal level. It can be made rigorous in most of the situations we are looking
at: in particular, when the action on T ∗Q is well-defined. It can be proven that
in such a situation, the geodesics can be extended for all time [TY05].
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Remark 2.29 (Geodesic completeness). The optimal control approach may
not be however the proper way to prove completeness of the group GV (or some
other actions) since the corresponding action of V on the tangent space is not
sufficiently smooth. Using the smooth Riemannian structure in Theorem 2.12
may prove more useful. Unfortunately, this result is only known for Sobolev
spaces.

Applications to images: In order to implement Formula (38), one needs to
compute the momentum map for specified actions. We have already seen the
action on landmarks in Section 2.2. We now look at the case of images, i.e. a
linear space of real valued functions defined on Ω.

The natural action on points is the push-forward by the map and the corre-
sponding action on functions is the pull-back with the inverse. Let us consider
I = H1(Ω,R) as the space of functions, then the action is:

(ϕ, I) ∈ GV × I 7→ I ◦ ϕ−1 ∈ I
(v, I) ∈ V × I 7→ −∇I · v ∈ L2(Ω,R) .

Remark 2.30. Note that the infinitesimal action is not completely well-defined
since −∇I · v /∈ I. This is a very common phenomenon in analysis and this is
a generic situation.

The momentum map is still well-defined by:

(P, I) ∈ L2(Ω,R)×H1(Ω,R) 7→ −P∇I ∈ V ∗ . (45)

The action on the co-tangent space L2(Ω,R) is defined by

(ϕ, P ) ∈ GV × L2(Ω,R) 7→ Jac(ϕ−1)P ◦ ϕ−1 . (46)

Note that this co-tangent action is the transport of densities.

Corollary 2.31. Let I0 ∈ H1(Ω,R) and Itarget ∈ L2(Ω,R) be respectively the
source and target images. Then, the gradient of

J (v) =

∫ 1

0

1

2
‖v(t)‖2V dt+

1

2
‖I0 ◦ ϕ−1 − Itarget‖2L2 (47)

can be written as:

∇uJ (t) = u(t)−K Jac(ϕt,1)P ◦ ϕt,1∇(I ◦ ϕt,1) , (48)

where I := I0 ◦ ϕ−1 and P := I − Itarget.

An important object that comes into play when implementing these equa-
tions is the operator K, the isomorphism from V ∗ to V . It would thus be more
convenient to deal with the space V from the point of view of K, which is
developed in the next section.

15



3 Construction of admissible spaces of vector
fields

This section is essentally based on [MG13]. We refer the reader to this rather
complete reference. The definition of admissibility 2.1 is satisfied by a wide
variety of space of vector fields. The main condition is the injection in the space
of C1 vector fields.

‖v‖1,∞ ≤ K‖v‖V . (49)

This condition implies that Dirac operators belong to V ∗. This property defines
reproducing kernel Hilbert space (rkhs) and the theory of such spaces have been
developed since the cornerstone paper by Aronszajn.

3.1 Reproducing kernel Hilbert spaces

Definition 3.1. A reproducing kernel Hilbert space (of vector fields) is a Hilbert
space V of functions from Ω to Rd such that the pointwise evaluation maps
denoted by δx : f ∈ H 7→ f(x) ∈ Rd are continuous. Denoting K : V ∗ 7→ V the
Riesz isomorphism between V ∗ (the dual of V ) and V , the reproducing kernel
associated with the space V is defined by k(x, y) = (δx,Kδy) ∈ L(Rd,Rd), where
the bracket (·, ·) denotes the dual pairing.

The kernel completely specifies the reproducing kernel Hilbert space V : we
refer the reader to [Sai97] for more informations on RKHS, but we can cite:

Definition 3.2. A positive kernel of dimension d on a set X is a map k :
S × S 7→ L(Rd) such that

1. for all x, y ∈ S, k(x, y) = k(y, x)∗

2. for any n ∈ N, x1, . . . , xn ∈ S and p1, . . . , pn ∈ Rd

n∑
i,j=1

〈pi, k(xi, xj)pj〉 ≥ 0 . (50)

The kernel is said to be striclty positive if inequality (50) is strict whenever
there exists pi 6= 0.

Theorem 3.3. The kernel associated to a rkhs is positive. To each positive
kernel corresponds a unique rkhs of functions defined on S with values in Rd.

Proof. The first assertion comes from the fact that∥∥∥∥∥
n∑
i=1

δpixi

∥∥∥∥∥
2

V ∗

=

n∑
i,j=1

〈pi, k(xi, xj)pj〉 . (51)

The second assertion is obtained by defining

V = Span {k(., x)p |x ∈ S and p ∈ Rd}

where the closure is taken with respect to the (semi) norm defined by formula
(50). Note that V is still a space of functions. Indeed, the injection

Span
{
k(., x)p |x ∈ S and p ∈ Rd

}
7→ F(S,Rd)
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is continuous for the topology of pointwise convergence on F(S,Rd). We now
prove that the positivity of the semi-norm. Let x ∈ S and consider 〈f(x), p〉 =
〈δpx, f〉 ≤ ‖δpx‖‖f‖ = 0, using the Cauchy-Schwarz inequality. Therefore, f(x) =
0 for any x ∈ S and thus f = 0.

We will be particularly interested by kernels defined on Rd. If the kernel is
smooth, then the rkhs is composed of smooth functions of the same smoothness.
When the kernel is translation invariant, the kernel k(x, y) is in fact a function
of the variable x−y that we will denote with a little abuse of notation k(x−y).

Theorem 3.4 (Bochner). Let k ∈ L1(Rd,Rd × Rd) with Fourier transform k̂

also in L1(Rd,Rd × Rd). Then k(x − y) is a positive kernel if and only if k̂(ξ)
is a self-adjoint positive matrix definite matrix for all ξ ∈ Rd.

We can be also interested by kernels that are invariant by rotations. A strict
subset of those are of the form kd(x, y) = k(‖x − y‖Rd) Id and among those,
functions k such that kd is a kernel for any d ∈ N∗ are characterized by a
theorem of Schoenberg:

Theorem 3.5 (Schoenberg). A function k : R+ 7→ R defines a kernel k(‖x −
y‖Rd) Id for any d ∈ N∗ if and only if it satisfies one of the two equivalent
properties:

1. f : r → k(
√
r) is a completely montonic function, i.e. for any n ∈ N,

(−1)nf (n)(t) ≥ 0 .

2. There exists a finite Radon measure µ such that

k(r) =

∫ +∞

0

e−r
2u2

dµ(u) .

How to build kernels? In pratice, Gaussian kernels are widely used, however
a wide range of kernels are available. The set of kernels is a cone, i.e. stable
under addition and multiplication by a positive scalar. It is also stable by
multiplication for scalar kernels. The addition of kernels has a nice variational
interpretation: Let us consider a finite set of admissible Hilbert spaces Hi with
kernels ki and Riesz isomorphisms Ki between H∗i and Hi for i = 1, . . . , n.
Denoting H = H1 + . . .+Hn, the space of all functions of the form v1 + . . .+ vn
with vi ∈ Hi, the following norm can be defined on H:

‖v‖2H = inf

{
n∑
i=1

‖vi‖2Hi

∣∣∣ n∑
i=1

vi = v

}
. (52)

The minimum is achieved for a unique n-tuple of vector fields and the space H,
endowed with the norm defined by (52), is complete.

Proposition 3.6. The formula (52) induces a scalar product on H which makes
H a RKHS, and its associated kernel is k :=

∑n
i=1 ki, where ki denotes the kernel

of the space Hi.
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Source Image IS Target Image IT

K1 K10 MK5
(a) (b)

Figure 1: Influence of the smoothing kernel when registering two images contain-
ing feature differences at several scales simultaneously in the LDDMM frame-
work. K1 and K10 are Gaussian kernels of respectively 1 and 10 standard devi-
ation, and MK5 is a sum of 5 Gaussian kernels. Better matching and plausible
deformation is obtained at the cost of additional parameters with MK5.

In applications, the choice of the kernel is crucial to avoid poor local min-
ima, as shown in [BRV12] (from which Figure 1 is taken), and also generate
more plausible deformations. It is also possible to build kernels that are associ-
ated with spaces of divergence free or curl free vector fields and thus put more
information in the variational functional.

In [BRV12], we also proposed a decomposition of the final deformation at
different scales by interpretating the matching as standard LDDMM on a semi-
direct product of groups.

4 Similarity measures

The image similarity measure has an important impact on the results of the
gradient descent, i.e. change the local minimum found as shown in Figure
21. Different norms can be used on the linear space of images and similarity
measures such as mutual information have been applied. In general, the choice
of norm should reflect the information at hand on the data and should be cheap
(in comparison to the geometric distance) to compute.

Let us assume that the space of objects is the set of embeddings of S2 in
R3. Note however that there is no preferred parametrization that can be used
to match one shape onto an other. Thus, it is natural to introduce similarity
measures that are invariant under reparametrization. Such similarity measures
can be developed in the framework of currents.

We denote by Ωp0(Rd) the space of continuous differential forms of order p
on Rd that vanish at ∞. Endowed with the sup norm, it forms a Banach space.
Any compact oriented submanifold M of dimension k gives a continuous linear

1We thank Nicolas Charon for these pictures
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Figure 2: This figure shows a striking difference when switching from currents
to varifolds to represent the curve. The red curve is the target shape and the
template is the blue circle. The matching is clearly better when using varifold
representation of data on this particular example where spiky shapes are present.

form on Ωk0(Rd), by the formula

ω →
∫
M

ω(x)(e1, . . . , ek) dα(x) , (53)

where α is the volume form of M .

Definition 4.1. The space of currents Cp of order p is the dual of Ωp0(Rd).

Remark 4.2. The original definition given by Laurent Schwartz generalizes the
approach of distributions and its Fréchet topology.

The natural left action associated with currents is the push forward since it
is dual to differential forms that are acted upon by pull back.

Comparison of currents and associated norms: In order to compare
such embeddings, a norm on the dual space of Ωp0(Rd) would be sufficient, yet it
should be easily computable on discrete data, for instance on a mesh. A mesh
can be considered as an ”unsmooth” submanifold and thus it has to be in the
dual of a sufficiently smooth space of differential forms. We can assume that
W ↪→ Ωp0(Rd) so that Cp ↪→ W ∗. Here again, since the pointwise evaluation is
a continuous linear form, W is a rkhs and the norm on W is easy to compute
so that it is natural to use the dual norm of W ∗ on Cp.

For instance, if γ : S1 7→ R2 is a given curve, then the dual norm can be
computed by

‖γ‖2W∗ =

∫
S2
1

〈γ′(t), k(γ(t), γ(s))γ′(s)〉dtds , (54)

where k is the underlying kernel. This is simply an average through the kernel
that is invariant w.r.t. reparametrization. In general, such an approach can be
extended to various type of representation of data using dual norms. We refer
the reader to [CT13, CT12] for generalizations of this approach to functional
currents or varifolds.

19



5 Statistical tools in a Riemannian setting

The Riemannian setting is convenient for generalizing statistical tools to mani-
folds. Hereafter, we describe some of them.

5.1 Fréchet/Kärcher mean

In what follows, we assume that we are interested in describing a population
(xi)i=1,...,n ∈ M a Riemannian manifold. The Riemannian metric on M is
associated with measuring deformations, which is already an a priori on the
data.

The Riemannian metric endows the manifold with a distance: The very first
interesting notion is the matrix of pairwise distance which gives some infor-
mation on the population on which basic classification can be performed. A
probably more interesting tool is the definition of average using the variational
generalization of mean in Euclidean space:

x = arg min
x∈M

n∑
i=1

d2(x, xi) . (55)

This generalization is called Fréchet mean or Kärcher mean (probably depending
on its uniqueness). Of course, other powers of the distance can be taken in this
definition, the effect is then to favor or not the effect of outliers: For example,
high values of p will shift the mean towards outliers. Existence of the Kärcher
mean is generally achieved whereas uniqueness is lost in general.

Uniqueness of Kärcher means: From the mathematical point of view,
uniqueness of the mean can be obtained on sufficiently small neighborhoods
(depending on the curvature) due to the convexity of the distance [K7̈7]. It is
not well-known however that in general, a direct consequence of [AF05] (in the
spirit of [Eke]) uniqueness is obtained on a Gδ dense subset of Mn in infinite
dimensions. In finite dimension, the Gδ can replaced by a set of full measure.

The application of such geometric mean in biomedical imaging have been
popularized by Pennec et al. [Pen99, AFPA07].

5.2 Generalization of PCA

Once a mean shape, also called template, is computed, the population can
be described by its modes of variations using PCA on the tangent space at the
template or its generalization PGA (Principal Geodesic Analysis) as developped
in [Fle04]. The difference between tangent PCA and PGA depends on the
curvature of the space and distribution of the population. In practice, in finite
dimension, a difference can be shown when there is high sectional curvature (see
[SLN10]).
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Figure 3: Average image estimates after 4 steps of a gradient descent with 4
different initializations on a population of 8 images.

5.3 Geodesic regression

The first step of PGA consists in representing the population using a geodesic
and minimizing the residuals:

argmin
x(t) is a geodesic

n∑
i=1

d2(x(t), xi) . (56)

This formulation is a bit rough and one may add a regularization term to make
it well posed. This representation can be used in the context of longitudinal
evolutions. This approach is developped in [NHV11] in the case of images and
requires the computation of Jacobi fields on the orbit of the image. Note that
the adjoint equations associated with the geodesics can be written as, where
λI , λP , λv are the adjoint variables of I, P, v

λIt + div(λIv + PK ∗ λv) = 0 ,

λPt + (∇λP ) · v −∇I ·K ∗ λv = 0 ,

λv + λI∇I −∇λPP = 0 .

(57)

Note that System (57) are up to multiplication with the canonical symplectic
matrix Jacobi fields equations. Numerically, these equations are not solved
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directly since the terms P, I, λI , λP are unsmooth functions so that standard
numerical schemes perform poorly. In fact, an integral equation of the system
(57) based on the flow map is more efficient. This model has been extended to
metamorphoses (see section 6.1). We also refer to [Fle13, BFH+13] for geodesic
regression.

5.4 Riemannian cubics

When looking at longitudinal evolutions, it is also natural to propose varia-
tional interpolation models such as cubics splines. Standard cubic splines in the
Euclidean space has a variational definition which is acceleration minimization.
This can be generalized to Riemannian manifold using covariant derivative de-
noted by D

Dt : On the set of curves x : [0, T ] 7→ R that interpolate the data, i.e.
x(ti) = xi,

argmin

∫ 1

0

∥∥∥∥ DDtẋ
∥∥∥∥2

dt . (58)

This has been developped in [TV12] in the context of LDDMM and this ap-
proach was originally developped in [NHP89] to interpolate camera motion and
then mathematically developped in [CLP95, CL95]. More generally, the case
of higher-order invariant Lagrangians has been treated in [GHM+12]. In high
dimension however, one should be careful that the space of geodesics is quite
large as illustrated in Figure 5.4.

Figure 4: Geodesic regression, piecewise linear interpolation and Riemannian
cubic interpolation of a sequence of 4 shapes that are deformations of a circle.

From the numerical point of view, we are of course not solving directly the
Euler-Lagrange equation associated with the functional (58) but instead, we use
the Hamiltonian formulation and introduce a forcing term ut in the equations
as follows: {

ṗt = −∂qH(pt, qt) + ut

q̇t = ∂pH(pt, qt)
(59)

and the minimization goes over the L2 norm of ut on T ∗Q. However, we suggest
in [TV12] to use different norms on ut that might be related to noise on the
data and the observation model.
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5.5 Parallel transport

When studying longitudinal evolutions instead of static distribution of shapes,
a new question appears: How to compare shape evolutions? Let us consider
the problem of small evolutions such as the evolution of the hippocampus in
the case of Alzheimer disease. One can model the evolution as a tangent vector
on the space of shapes, i.e. TQ. A Riemannian approach is a natural way to
explore and natural metrics on the tangent space are Sasaki metric [MF12] or
Cheeger-gromoll metrics. Let us write the Sasaki metric:

‖(ẋ, δx)‖2 = ‖ẋ‖2 +

∥∥∥∥ DDtδx
∥∥∥∥2

,

where D
Dt is the covariant derivative with respect to ẋ. A strict subset of geodesic

equation for the Sasaki metric is

∇ẋw = 0 and ∇ẋẋ+R(v, w)ẋ = 0 . (60)

In particular, parallel transport will have a strong impact on Kärcher mean
estimation when using this metric.

Another approach consists in defining a template on the space of shapes
and then transport the longitudinal evolutions to the tangent space of this tem-
plate. The first (historically) approaches used adjoint transport of the vector
field, co-adjoint transport ot the momentum, they however suffer from issues. In
particular, co-adjoint transport has been used in [FRC+12] and gave promising
results. More involved computationally, parallel transport under the Levi-Civita
connection has been proposed in [You07, QYMC08]. Until now, there is no es-
tablished transport method. Indeed, parallel transport under the Levi-Civita
connection is an orthogonal map between tangent spaces but the associated Rie-
mannian metric is somehow arbitrary and thus may bias the study. In addition,
holonomy (i.e. parallel transport depends on the path) might be undesirable.
Note that it is also possible to use connections that do not come a Riemannian
metric, as done in [LP13].

6 Other models

Around the standard LDDMM model have been developed other models of
interest.

6.1 Metamorphoses

Metamorphoses is a Riemannian metric developed to account for intensity vari-
ation of the image as well as geometric changes. The metric on the tangent
space of H1(Ω,R) is given by the minimization of

‖δI‖2 = argminv∈V
1

2
‖v‖2V +

α

2
‖δI +∇I · v‖2L2 . (61)

Clearly, an careful analysis needs to be developed in order to prove existence of
geodesics. This has been done in [TY05] and a more geometrical presentation
is given in [HTY08].
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Figure 5: This figure shows snapshots of two deformations from the left-most
source image to the right-most target image. The green curves show the optimal
Right-LDM path (a right-geodesic), while blue curves show the optimal left path
(a left-geodesic). Note that the paths are different, though both arrive at an
exact match. The right-metric length of the green geodesic equals the left-metric
length of the blue geodesic.

6.2 Left-invariant metrics

The right-invariant point of view on group of diffeomorphisms is analog to an
Euler point of view on fluids. Therefore, kernels that are used in practice are
translation and rotation invariant, not only to save computational cost. Indeed,
operators that are used in practice are separable in Fourier space. In theory
however, it is possible to use kernel that are spatially varying. Such an approach
is fully justified when switching from right- to left- invariant metrics on the group
of diffeomorphisms as shown in [SRV13].

The model is simply the minimization of the functional (5) under the con-
vective velocity constraint:

∂tφ(t) = dφ(t) · v(t) . (62)

The inversion map on a Lie group is an isometry when switching from left-
to right-invariant metric so that the final optimal map ϕ(1) will be the same.
However the optimal path will be different as shown in Figure 5.

Of course, what is lost using a left-invariant together with a left action is the
induced metric on the space of shapes (in the presence of isotropy). However,
this opens the possibility of tuning spatially varying metrics in situations of
interest.

6.3 Other constraints

In construction.

A Bochner integral

In this section, we give a brief introduction to the Bochner integral based on
[SG05] which is a generalization of Lebesgue integral on real valued functions
to Banach valued functions.

Let B denote a real Banach space and U ⊂ B be an open set. If A ⊂ B
is a set, the notation 1A is the indicator function of A defined by 1A(x) = 1 if
x ∈ A and 1A(x) = 0 otherwise.
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Definition A.1. Let (Ω,A, µ) be a complete σ−finite measure space. A func-
tion f : Ω→ E is called a step function if it can be written as

f(x) =

n∑
i=1

1Ei(x) ai , (63)

where n ≥ 1 and Ei ∈ A are measurable sets of finite measure and ai ∈ B.
The integral of f is defined by∫

Ω

f dµ :=

n∑
i=1

µ(Ei) ai

Definition A.2. A function f : Ω → B is called µ−measurable if it is almost
everywhere (µ−a.e.) the pointwise limit of step functions, i.e. there exists a
sequence (fn)n∈N of step functions such that µ−a.e. lim

n→∞
‖fn(t)− f(t)‖ = 0.

Note that this definition implies the convergence µ−a.e. of the norms by
using the triangle inequality lim

n→∞
|‖fn(t)‖ − ‖f(t)‖| = 0. Since ‖fn(x)‖ =∑n

i=1 1Ei(x) ‖ai‖ for a step function, this implies that ‖fn‖ is Lebesgue measur-
able. In particular, using Fatou’s lemma, we have

∫
Ω
‖f‖ dµ ≤ lim inf

n→∞

∫
‖fn‖ dµ.

Remark A.3. This definition implies that for every e ∈ B∗ the dual space of
B, the real function e(f) is measurable.

Definition A.4. A measurable function f : Ω → B is called µ−integrable if
there exists a sequence of step functions gn converging µ−a.e. on Ω to f such
that lim

n→∞

∫
Ω
‖gn − f‖ dµ = 0. The integral of f is defined by∫

Ω

f dµ := lim
n→∞

∫
Ω

gn dµ .

It can be checked easily that the limit does not depend on the chosen con-
verging sequence gn. Let us prove the following equivalence,

Proposition A.5. A measurable function f is µ−integrable if and only if∫
Ω
‖f‖dµ <∞.

Proof. Let us prove the first implication: By the triangle inequality, the defini-
tion implies that |

∫
Ω
‖fm‖dµ−

∫
Ω
‖fn‖ dµ| ≤

∫
Ω
‖fm− f‖ dµ+

∫
Ω
‖fn− f‖ dµ,

which shows that
∫

Ω
‖fm‖ dµ is a Cauchy sequence. Its limit is

∫
Ω
‖f‖ dµ (again

by triangle inequality).
We now prove the reverse implication in the case µ(Ω) <∞ (the case where

µ is only σ−finite follows easily). In addition, by restriction to the measurable
set {x ∈ Ω | ‖f(x)‖ > 0}, we can assume ‖f(x)‖ > 0 for almost all x ∈ Ω.

Let f be a measurable function such that
∫

Ω
‖f‖ dµ < ∞. Since f is mea-

surable, there exists a sequence fn of step functions converging pointwisely to f .
For such a given sequence, it is not true a priori that lim

n→∞

∫
Ω
‖f − fn‖ dµ = 0,

but this is true for a modification of fn. Consider ε > 0,

An,ε := {x ∈ Ω | ‖fn(x)− f(x)‖ > ε‖f(x)‖}
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and BN,ε = ∪n≥NAn,ε. By pointwise convergence of fn, lim
n→∞

µ(BN,ε) = 0.

Thus, for ε = 1/k, there exists N(k) such that µ(BN(k),1/k) ≤ 1/k2. Let us
define the following step function

gk :=
1

1 + 1/k
1Ω\BN(k),1/k

fN(k) .

First, remark that ‖gk‖ ≤ ‖f‖ since on Ω \BN(k),1/k, we have

‖fN(k)(x)‖ − ‖f(x)‖ ≤ 1

k
‖f(x)‖ ,

so that

‖fN(k)(x)‖ ≤ (1 +
1

k
)‖f(x)‖ .

In addition, gk(x) converges to f(x) for almost all x ∈ Ω: Indeed, we have

‖f(x)− gk(x)‖ ≤ ‖f(x)− fN(k)(x)‖+ (1− 1

1 + n
)‖fN(k)(x)‖ ≤ 2

k

on Ω \ ∪k≥nBN(k),1/k. Since µ(∪k≥nBN(k),1/k) ≤
∑∞
k=n

1
k2 −→n→∞ 0, the result

ensues.

Definition A.6. Let p ≥ 1, the space Lp(Ω, µ,B) is the Banach space of
µ−measurable functions (equivalence classes for the equivalence relation f ∼ g
if g = f µ−a.e.) such that ‖f‖ ∈ Lp(Ω, µ).

Hereafter are some direct consequences and other useful remarks:

• Continuous functions on an interval I, C0(I,B) are Bochner integrable.

• Composition of continuous maps are Bochner integrable.

• Let I ⊂ R be an interval and H a Hilbert space, then L2(I,H) is a Hilbert
space.

• For p ≥ 1, W 1,p(I,H) defined as primitive integrals of elements in Lp(I,B)
is a Banach space. Notet that of W 1,p(I,B) ⊂ C0(I,B).

• W 1,2(I,H) is a Hilbert space, and it is separable if H is separable.

We end this section with a proposition that will be used in the appendix on
ODE:

Proposition A.7. Let I be an interval and f : I × B → B a function that
is Bochner measurable when the second variable is fixed and continuous in the
second variable for almost every t ∈ I. Then, if x : I → B is continuous, the
composition t→ f(t, x(t)) is Bochner measurable.

Proof. The proof is left to the reader as exercise.

B ODE on Banach spaces

This section follows [O’R97].
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B.1 Integration of ODE

In this section, we are concerned with the initial value problem of ordinary
differential equations (ODE):
Let I be an interval, B be a Banach space and f : I × B → B be a function.
Find a function x : I → B such that{

x′(t) = f(t, x(t))

x(0) = a ∈ B .
(64)

In what follows, we define the analytical framework suitable for our purpose.
The class of functions f we want to work with is called Caratheodory functions.

Definition B.1. A function f : I ×B → B is an Lp−Caratheodory function if

1. The map y → f(t, y) is continuous for almost all t ∈ I,

2. For all y ∈ B, the map t→ f(t, y) is Bochner measurable,

3. For every r > 0, there exists hr ∈ Lp(I,R) such that if ‖y‖ ≤ r then
|f(t, y)| ≤ hr(t) a.e. on I.

Definition B.2. A function f : I ×B → B is said to be Lp−Lipschitz if there
exists α ∈ Lp(I,R) such that for all x, y ∈ B

‖f(t, x)− f(t, y)‖ ≤ α(t)‖x− y‖ ,

for almost all t ∈ I.

Theorem B.3. Let f : [0, T ] × B → B be a Lp−Caratheodory function and
Lp−Lipschitz. Then, there exists a unique x ∈W 1,p([0, T ], B) solving (64).

Proof. We denote I := [0, T ]. Define A(t) =
∫ t

0
α(s) ds, so that a.e. A′(t) =

α(t). We introduce the norm on C0(I,B), ‖y‖A = supx∈I ‖y(t)e−A(t)‖. This
norm is equivalent to the standard sup norm since e−A(t) is bounded below and
above by positive real numbers. Thus the space (C0(I,B), ‖ · ‖A) is a Banach
space.

The map F : C0(I,B)→ C0(I,B) defined by

F (y)(t) =

∫ t

0

f(s, y(s)) ds ,

is well-defined since s → f(s, y(s)) is Bochner measurable by proposition A.7
and it is integrable by Proposition A.5: its norm is integrable using the Lipschitz
property. Using standard property of Bochner integral and the fact that f is
Lp−Lipschitz, we get

‖F (x)(t)− F (y)(t)‖ ≤
∫ t

0

‖f(s, x(s))− f(s, y(s))‖ ds

≤
∫ t

0

α(s)‖x(s)− y(s)‖ ds .

Multiplying the previous inequality by e−A(t), we get:

e−A(t)‖F (x)(t)− F (y)(t)‖ ≤ e−A(t)

∫ t

0

‖f(s, x(s))− f(s, y(s))‖ ds
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≤ e−A(t)

∫ t

0

α(s)eA(s)e−A(s)‖f(s, x(s))− f(s, y(s))‖ ds

≤ e−A(t)‖x− y‖A
∫ T

0

α(s)eA(s) ds

≤ (1− e−A(t))‖x− y‖A .

Noting that k := supt∈I 1− e−A(t) < 1, it implies that F is a contraction

‖F (x)− F (y)‖A ≤ k‖x− y‖A , (65)

and existence and uniqueness of the solution in C0(I,B). Let x be this contin-
uous solution. Since f is Lp−Lipschitz, the map t → f(t, x(t)) is Lp(I,B), so
that x ∈W 1,p(I,B).

B.2 Continuity of solutions w.r.t parameters

We also state without proof Gronwall’s lemma (see [You08] for a proof):

Lemma B.4 (Gronwall’s lemma). Let f, a, b be three measurable positive real
functions defined on the interval [0, T ] for T > 0. If

f(t) ≤ a(t) +

∫ t

0

b(s)f(s) ds , (66)

then, for all t ∈ [0, T ]

f(t) ≤ a(t) +

∫ t

0

a(s)b(s)e
∫ s
0
b(u)du ds . (67)

A consequence of this lemma is the continuity of the solutions with respect
to the initial condition. Another interesting perturbation that will be used in
Section 2.1 is the following:

Proposition B.5. Let fn be a bounded sequence of L1−Lipschitz functions
such that on any bounded sets in B, there exists a sequence of L1 functions αn
s.t. ‖fn(t, x) − f(t, x)‖ ≤ αn(t) with limn→∞ ‖αn‖L1 = 0 ((fn)n∈N converges
uniformly to f on bounded sets) then limn→∞ supt∈[0,1] ‖xn(t)− x(t)‖ = 0.

Proof. First, remark that all the solutions xn(t) and x(t) are bounded on [0, 1].
We have,

‖xn(t)− x(t)‖ ≤
∫ t

0

‖fn(s, xn)− f(s, x)‖ ds

≤
∫ t

0

‖fn(s, xn(s))− f(s, xn(s))‖ds+

∫ t

0

‖f(s, xn(s))− f(s, x(s))‖ ds

≤
∫ t

0

αn(s) ds+

∫ t

0

M(s)‖xn(s)− x(s)‖ ds .

Applying Gronwall’s lemma, we obtain, denoting
∫ t

0
αn(s) ds = An(t)

‖xn(t)− x(t)‖ ≤ An(t) +

∫ t

0

An(s)M(s)e
∫ s
0
M(u) du ds

28



≤ sup
t∈[0,1]

An(t)

(
1 +

∫ t

0

M(s)e
∫ s
0
M(u) du ds

)
.

This gives the result since ‖αn‖L1 →n→∞ 0.
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