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In this document, we present our past five years research activities on diffeomorphic
image matching, optimal transport and related mathematical questions. Most of our
work is motivated by applications to shape analysis and in particular to medical
imaging data. We aim at developing well-posed mathematical models and methods
which are computationally feasible on real data in order to address concrete prob-
lems of interests. Thus, we are also involved in the software implementation of these
methods, which are freely available.

In the introduction, we present a unified point of view between two areas in
shape analysis, namely shape matching using a diffeomorphism group endowed
with a right-invariant metric and optimal transport.

The first part of the document concerns the mathematical foundations of the so-
called field of Computational Anatomy in medical imaging, and more generally in
shape analysis. The questions we are interested in are often of analytical and varia-
tional nature. Our most important achievement in this direction is the geodesic com-
pleteness result of the group of diffeomorphisms endowed with a right-invariant
Sobolev metric of high enough order. An other variational problem of interest is
the minimization of the acceleration, for which we compute the tight relaxation in a
particular case.

The second part of the document presents the natural extension of the L2 Wasser-
stein metric to the case of unbalanced (nonnegative measures), that we called Wasser-
stein Fisher-Rao. We introduce it via its so-called Benamou and Brenier formulation,
then we present the particularly simple equivalent static formulation and efficient
numerical algorithms based on entropic regularization. We also draw the link be-
tween the Camassa-Holm equation and the Wasserstein-Fisher-Rao metric which is
similar to the link Brenier has pioneered between optimal transport and the incom-
pressible Euler equation. A surprising consequence is the new formulation of the
Camassa-Holm equation as an incompressible Euler equation for a singular density.

The last part addresses the actual implementation of the framework of diffeo-
morphic registration and in particular the crucial choice of the right-invariant metric.
Interestingly, we give a mathematical framework for each of the methods we pro-
posed. In the same context, we show the efficiency of a new similarity measure be-
tween surfaces or curves based on unbalanced optimal transport in comparison with
kernels methods. On the extension of diffeomorphic registration, we introduced a
shooting algorithm on the space of images which allows to perform geodesic regres-
sion on time sequences of images. Last, we used this shooting algorithm to perform
longitudinal shape data classification based on the shooting algorithm applied to the
Alzheimer disease.
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Chapter 1

Introduction

1.1 Motivation

This document is concerned with mathematical questions in shape analysis and
their applications in image registration and Computational Anatomy. More pre-
cisely, our work deals with the development of shape matching with medical imag-
ing as target applications. We study in particular two complementary models of
shape matching; the first one is concerned with the matching of any shapes or ob-
jects of the same class that can be embedded in the Euclidean space and the sec-
ond one deals with the particular case when shapes are measures, actually nonneg-
ative measures. Although some of the results are theoretical, for instance on infi-
nite dimensional Riemannian geometry or optimal transport, these developments
were essentially motivated by medical image registration and the so-called emerg-
ing domain of Computational Anatomy, a rather informative webpage is available
at https://en.wikipedia.org/wiki/Computational_anatomy.

One goal of Computational Anatomy consists in developing quantitative tools
to analyse and quantify the statistical variability of anatomical shapes and help the
practitioner with the diagnosis. Underlying this approach, there is a constitutive
hypothesis which is that pathologies can be detected out of images of organs. Let us
mention, as a convincing example, the case of the Alzheimer disease which entails
a decay of the hippocampi (some regions of interest in the brain). Going beyond
the change of global indicators (such as volume) by using the whole geometrical
information might improve the results of statistical studies, as shown for instance in
[THD+14, LAFP11].

The mathematical modeling of shapes is far from being new and d’Arcy Thomp-
son was probably the first to introduce the idea of studying their variability through
an underlying deformation of a template (an average shape), see [Boo76]. Due to the
increase of medical imaging data in the last twenty years, there was a need to de-
velop quantitative methods applying such kind of ideas. To this end, Grenander
laid down the foundations of pattern theory [Gre93, GM98]. It was further theoret-
ically developed and also numerically implemented by Miller, Trouvé and Younes
and collaborators [Tro95, BMTY05, JM00, MTY06, YAM09]. In this introduction, we
give a short introduction to this area from a mathematical point of view.

Even before being interested by any statistical description of shape variability, a
problem of interest in medical imaging consists in registering two biomedical im-
ages. The main application is to establish correspondences between different image
acquisitions. In order to make the problem concrete, we instantiate it in more math-
ematical terms below, presented in the case of images but it extends readily to the
case of any embedded object in the Euclidean space: An image can be modeled as a
scalar valued function defined on a domain (smooth domain) Ω ⊂ Rd with d = 2, 3.
Finding correspondences between two images may or may not be symmetric with

https://en.wikipedia.org/wiki/Computational_anatomy


2 Chapter 1. Introduction

respect to the given images (for example, one image is noisy and the other is not
so that their role in the registration is not symmetric).Thus, standard approaches for
registration distinguish the given images: there is the source image I that will be
deformed by an invertible map ϕ : Rd → Rd, the deformed image is I ◦ ϕ−1. The
other image J will be called the target image. For concrete applications in biomedical
imaging, constraints have to be imposed on the transformation ϕ. A usual constraint
is to require that ϕ is invertible and preserves the topology: it is a priori difficult to
make sense of folding or collapsing tissues. In particular, diffeomorphisms of the
domain satisfy this condition. Due to noise or differences in acquisition modalities,
there is in general no diffeomorphic transformation ϕ such that the deformed source
image denoted by ϕ · I is equal to J . And if, by chance, there exists such a trans-
formation, it need not be unique. From a computational viewpoint, solving for ϕ
the equation I ◦ ϕ−1 = J is usually done via an optimization problem on the set of
transformations denoted by S:

argminϕ∈S d(I ◦ ϕ−1, J)

where d is a function satisfying d(I, J) = 0 =⇒ I = J , such as a distance. In gen-
eral, the first remark on the existence of ϕ implies that this minimization does not
have a solution in S but this solution might exist in a bigger space. A practical so-
lution for ill-posed inverse problems consists in adding a regularization term on the
deformation, that penalizes "weird" deformations. The new minimization problem
is then

J (ϕ) = R(ϕ) + d(I ◦ ϕ−1, J) , (1.1.1)

whereR(ϕ) is the "cost" associated with the deformationϕ and controls its smooth-
ness. This variational problem is most of the time non-convex. With respect to the
previous issues (existence and uniqueness), existence is obtained and also, most of
the time, a generic uniqueness result holds. Most of the available registration meth-
ods can be formulated as the minimization of a functional of type (1.1.1). Remark
that, on purpose, we did not specify the domain for the optimization of the func-
tional J . Indeed, at this level of generality, one can incorporate the domain con-
straint in the functionR, e.g. R(ϕ) if ϕ /∈ S. In particular, the functionRmay include
a prior knowledge on the space of admissible deformations, as well as statistical in-
formations on the deformations: An idealized and informal situation would be that
the distribution of deformations among a population is known a priori so that it
makes sense to use R(ϕ) = − log(p(ϕ)), which would correspond to log-likelihood
maximization when p(ϕ) is the probability of occurrence of ϕ.

In the situation where no prior information is available and the only constraint is
the diffeomorphic one, different methods have been proposed to satisfy it: generate
diffeomorphisms (1) using the Lie-exponential, i.e. flows of vector fields constant in
time and (2) using time-dependent vector fields.
For (1), the Lie-exponential introduces a regularization on the Lie algebra on the
velocity field

R(ϕ) :=
1

2
‖v‖2V

where V is a Hilbert space of smooth vector fields and ϕ is determined by v by
the following autonomous ode: ∂tϕ(t) = v ◦ ϕ(t). It is well-known that the Lie
exponential is not surjective in infinite dimension: an example is given in [KW09]
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on Diff(S1).
For (2), the regularization is given by

R(ϕ) := inf
vt

1

2

∫ 1

0
‖vt‖2V dt

where ∂tϕ(t) = vt ◦ ϕ(t) is the flow equation that determines ϕ for a given time
dependent vector field vt (the subscript t stands for the time variable).

While the latter approach is more computationnally demanding than the for-
mer, yet it enjoys more mathematical properties that are of interest for applications,
in particular it provides a Riemannian framework. This framework is often called
Large Deformation Diffeomorphic Metric Mapping (LDDMM) developed by the work of
Dupuis, Grenander, Miller, Trouvé and Younes and many others. The Riemannian
framework enables the generalization of simple tools from geometry, probability
and statistics such as distance, geodesic, linear regression, cubic splines, principal
component analysis, etc... which have been developed by many authors , including
us, in the last ten years.

In the functional (1.1.1), the data fidelity denoted by d actually has an important
impact on the minimizers as well as on the actual computed solutions, whatever
the minimization scheme used in practice. These data fidelities are often simple to
compute such as the square of the L2 difference between the target image and the
deformed initial image, called sum of squared differences (SSD) or such as fidelities
built on cross-correlation quantities. Ideally, this data fidelity should be fast to com-
pute as well as its gradient, convex and should vanish at its minimum when the two
images are equal. When the data of interest is sparse, like a surface or a curve in
the Euclidean space, data fidelities using kernel metrics have been proposed. These
methods consists in representing the data as a measure, current or varifold and using
some "weak" dual norm defined by a smoothing kernel. Actually, these data fidelity
are used in many inverse problems in imaging and new developments in this area
can have a substantial impact outside diffeomorphic image matching.

This document presents a selection of our contributions in the area of shape anal-
ysis and in particular in Computational Anatomy. These contributions range from
the theoretical analysis of the existing framework, its development and its applica-
tions to real data. Before presenting them, we give a brief introduction to our area of
research.

1.2 A geometric framework for diffeomorphic image match-
ing and optimal transport

In this section, we introduce the LDDMM framework, optimal transport and we give
a geometric picture in which the two can be understood.

1.2.1 A brief introduction to the LDDMM framework

The basic construction of the LDDMM framework consists in the diffeomorphic reg-
istration problem which aims at finding an optimal diffeomorphic map of the ambi-
ent space that maps a source shape or image onto a target one. It thus takes the form
of an infinite dimensional optimal control problem: Minimize the cost functional

L(ξ) =

∫ 1

0
‖ξ(t)‖2V dt+ S(ϕ · q) (1.2.1)
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under the constraints

∂tϕ(t, x) = ξ(t, ϕ(t, x)) (1.2.2)
ϕ(0, x) = x ∀x ∈ D , (1.2.3)

and V is a Hilbert space of vector fields on a Euclidean domainD ⊂ Rd, left invariant
by their flows, such that the inclusion map V ↪→ W 1,∞(D,Rd) is continuous. That
is, the norm on V controls theW 1,∞ norm, we call such a space V an admissible space
of vector fields. In particular, these spaces are included in the family of reproducing
kernel Hilbert spaces (RKHS), [Aro50] since the pointwise evaluation is a continuous
linear map, which implies that such spaces are completely defined by their kernel.
In the rest of this document, we denote this kernel k and the isomorphism from V to
its dual V ∗ by K.

The direct consequence of this hypothesis on V is that the flow of a time depen-
dent vector field in L2([0, 1], V ) is well defined, see [You08, Appendix C]. Then, the
set of flow at time 1 defines a group of diffeomorphisms denoted by GV . Denoting

Fl1(ξ) = ϕ(1) where ϕ solves (1.2.2) , (1.2.4)

define
GV

def.
= {ϕ(1) : ∃ ξ ∈ L2([0, 1], V ) s.t. Fl1(ξ)} , (1.2.5)

which has been introduced by Trouvé in [Tro95]. On this group, Trouvé defines a
metric

dist(ψ1, ψ0)2 = inf

{∫ 1

0
‖ξ‖2V dt : ξ ∈ L2([0, 1], V ) s.t. ψ1 = Fl1(ξ) ◦ ψ0

}
(1.2.6)

under which he proves that GV is complete. In full generality, that is for a general
space of vector fields V , very few properties are known on this group. For instance,
it is a priori not a topological group, or more precisely, there is no known topolog-
ical structure making it a topological group. Moreover, there does not need to be a
differentiable structure on this group. The availability of these additional properties
crucially depends on the space V . A remarkable property of this distance is that it is
right-invariant which means for every ψ1, ψ2, ψ3 ∈ GV , one has

dist(ψ1 ◦ ψ3, ψ0 ◦ ψ3) = dist(ψ1, ψ0) . (1.2.7)

Instead of formulating the variational problem on the group of diffeomorphisms
GV , it is often possible to rewrite (under mild conditions) the optimization problem
on the manifold Q. In the case when Q is "smaller" than the group of diffeomor-
phisms, for instance the space of landmarks, it is of interest for computational pur-
poses. For a shape q that is embedded in the domainD, this optimal control problem
can be rewritten in the following form that can be of interest to reduce the dimension
of the optimization set.

L(ξ) =

∫ 1

0
‖ξ(t)‖2V dt+ S(q(1)) (1.2.8)

under the constraints

∂tq(t, x) = ξ(t, q(t, x))

q(0, x) = q0(x) ∀x ∈ D .
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In the case of an image I : D 7→ R, the constraint is replaced by the advection
equation ∂tI+〈∇I, ξ〉 = 0. We will see later in the introduction how the optimization
set can be reduced to a space which has the dimensionality of Q.

Importantly, under mild conditions, it is possible to prove that this functional in-
duces a Riemannian metric on the orbit of an object q when Q is a finite dimensional
manifold. Thus, a right-invariant metric on a group G which has a left action on
a manifold Q has an induced metric for which the action is a Riemannian submer-
sion. The Riemannian structure on such a manifold Q, thought of as the space of
shapes, is of interest in order to extend natural tools from Euclidean geometry such
as distance, principal component analysis (PCA), linear regression, cubic splines,
parallel transport, etc... We contributed to such extensions in [NHV11] for extend-
ing geodesic regression on the orbit of images and the introduction of cubic splines
in [VT12, SVN15]. This last extension has motivated some theoretical developments
presented in this document.

1.2.2 A brief introduction to optimal transport

Optimal transport is a way to lift a metric on a space M , a Riemannian manifold for
instance endowed with its induced metric, to a metric on the space of probability
densities. In this section, we only present the formulations used in this document,
for a rather complete review on optimal transport we refer to the gigantic mono-
graph of Villani [Vil08].

We present two equivalent formulations of optimal transport. We call the first
formulation "static" since time does not intervene, in contrast to the second formu-
lation which we call "dynamic".

Static formulation of optimal mass transport: The optimal mass transport prob-
lem as introduced by Monge in 1781 consists in finding, between two given proba-
bility measures ν1 and ν2, a map ϕ : M 7→ M such that ϕ∗ν1 = ν2, i.e. the image
measure of ν1 by ϕ is equal to ν2 and which minimizes a cost given by∫

M
c(x, ϕ(x)) dν1(x) , (1.2.9)

where c is a positive function that represents the cost of moving a particule of unit
mass from location x to location y. This problem is ill-posed in the sense that solu-
tions may not exist and the Kantorovich formulation of the problem is the correct
relaxation of the Monge formulation, which can be presented as follows: On the
space of probability measures on the product space M ×M , denoted by P(M ×M),
find a minimizer to

I(m) =

∫
M2

c(x, y) dm(x, y) such that p1
∗(m) = ν1 and p2

∗(m) = ν2 , (1.2.10)

where p1
∗(m), p2

∗(m) denote respectively the image measure ofm ∈ P(M×M) under
the projections on the first and second factors onM×M . Most often in the litterature,
the cost c is chosen as a power of a distance. From now on, we will only discuss
the case c(x, y) = d(x, y)2 where d is the distance associated with a Riemannian
metric onM . In this case, the Kantorovich minimization problem definesW2, the so-
called L2-Wasserstein distance on the space of probability measures which metrizes
the weak convergence of measures, as well as other Lp-Wasserstein distances. The
Monge formulation can be expressed as a minimization problem as follows, for µ, ν
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being absolutely continuous w.r.t. the Riemannian volume measure,

W2(µ, ν)2 def.
= inf

ϕ∈Diff(M)

{∫
M
d(ϕ(x), x)2 dν1(x) : ϕ∗ν1 = ν2

}
, (1.2.11)

where Diff(M) denotes the group of smooth diffeomorphisms of M . Usually, the
Monge formulation is rather introduced with maps instead of diffeomorphisms,
which is equivalent in this case.

Dynamic formulation: In [BB00], Benamou and Brenier introduced a dynamical
version of optimal transport which was inspired and motivated by the study of the
incompressible Euler equation. Let ρ ∈ C∞(M,R+) be a positive function, note that
all the quantities will be implicitly time dependent. The dynamic formulation of the
Wasserstein distance consists in minimizing

E(ξ) =

∫ 1

0

∫
M
‖ξ(t, x)‖2ρ(t, x) dvol(x) dt , (1.2.12)

subject to the constraints ρ̇ + div(ρ ξ) = 0 and initial and final condition ρ(0) = ρ0,
ρ(1) = ρ1. The notation ‖ · ‖ stands for the Euclidean norm.

Equivalently, following [BB00], a convex reformulation using the momentum
m = ρ ξ reads

E(m) =

∫ 1

0

∫
M

‖m(t, x)‖2

ρ(t, x)
dvol(x) dt , (1.2.13)

subject to the constraints ρ̇+ div(m) = 0 and the corresponding initial and final con-
ditions on the density ρ. Let us underline that the functional E is convex in ρ,m and
the continuity equation is linear in (ρ,m), therefore convex optimization methods
can be applied for numerical simulations. Due to the continuity equation, the prob-
lem is feasible (or controllable) if and only if the initial and final densities have the
same total mass using Moser’s lemma [Mos65].

1.2.3 A common geometric framework

In this section, we present a geometric construction which is common to LDDMM
and optimal transport. This is based on a result written in [Mic08, Claim of Section
29.21] infinite dimensions and we do not discuss here the complications arising from
the infinite dimensional setting of shape spaces. We first introduce the notion of a
group action.

Group actions. Let GV be a group which is a smooth manifold with a tangent
space at the identity Id denoted by V , acting from the left on a smooth manifold Q.
We denote the action by

Φ : G×Q→ Q , (g, q) 7→ g · q := Φg(q). (1.2.14)

Being a left action means that Φ satisfies the composition law g1 · (g2 · q) = (g1g2) · q
and Id · q = q for any q ∈ Q and g1, g2 ∈ G.

Definition 1. The infinitesimal generator of the action corresponding to ξ ∈ V is the
vector field on Q given by

ξQ(q) :=
d

dt

∣∣∣∣
t=0

exp(tξ) · q . (1.2.15)
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We will often use the notation ξ · q instead of ξQ(q).

We also define the right-trivialization map.

Definition 2 (Right-trivialization). Let H be a group and a smooth manifold at the
same time, possibly of infinite dimensions, the right-trivialization of TH is the bun-
dle isomorphism τ : TH 7→ H × TIdH defined by τ(h,Xh)

def.
= (h, dRh−1Xh), where

Xh is a tangent vector at point h and Rh−1 : H → H is the right multiplication by
h−1, namely, Rh−1(f) = fh−1 for all f ∈ H .

In fluid dynamics, the right-trivialized tangent vector dRh−1Xh corresponds to
the spatial or Eulerian velocity and Xh is the Lagrangian velocity. Importantly, on
the group of Sobolev diffeomorphisms (defined in Section 2), this right-trivialization
map is continuous but not differentiable with respect to the variable h. Indeed, right-
multiplication Rh is smooth, yet left multiplication is continuous and usually not
differentiable, due to a loss of smoothness.

This result presents a standard construction to obtain Riemannian submersions
from a transitive group action (in finite dimensions).

Proposition 3. Let G be a Lie group, whose tangent space at identity is denoted by V .
Consider a smooth left action of G onto a smooth manifold Q, which is transitive and such
that, for every q ∈ Q, the infinitesimal action ξ 7→ ξ · q is a surjective map. Let gV : Q →
V ∗ ⊗ V ∗ be a map such that for every q ∈ Q, gV (q) is a positive definite quadratic form. Let
q0 ∈ Q be a "reference" point. One defines the Riemannian metric gG on G by

gG(h)(Xh, Xh) = gV (h · q0)(dRh−1Xh, dRh−1Xh) . (1.2.16)

Let Xq ∈ TqQ be a tangent vector at point h · q0 = q ∈ Q, one defines the Riemannian
metric gQ on Q by

gM (q)(Xq, Xq)
def.
= min

ξ∈TIdG
g(q)(ξ, ξ) under the constraint Xq = ξ · q , (1.2.17)

where ξ = Xh · h−1.
Then, the map π0 : G→ Q defined by π0(h) = h · q0 is a Riemannian submersion of the

metric gG on G to the metric gQ on Q.

We now formally apply the previous result to the infinite dimensional cases of
optimal transport and LDDMM.

Example 4 (LDDMM). The LDDMM framework uses a single scalar product on the tan-
gent space at identity to define the metric g(ϕ · q0)(ξ, ξ) = ‖ξ‖2V . Thus, the metric on the
group of diffeomorphisms is g(ϕ)(Xϕ, Xϕ) = ‖Xϕ ◦ ϕ−1‖2V , which is a right-invariant
metric.

Example 5 (Optimal transport). The Benamou-Brenier formula [BB00] reformulates opti-
mal transport as an optimal control problem on the space of probability densities which takes
the form written in Proposition 3.

The group G is the group of diffeomorphisms Diff(M) of a given closed manifold M
and the manifold Q which is acted upon is the affine space of probability densities on M .
The action is the pushforward of a density by an element of the group. We fix a reference
probability measure µ0 and we consider the space of probability densities with respect to this
reference measure, that we denote by Densp(M). That is, the left group action

π : Diff(M)×Densp(M)→ Densp(M) (1.2.18)
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is defined by
π(ϕ, ρ) = ϕ∗(ρ) = Jac(ϕ−1)ρ(ϕ−1) . (1.2.19)

The infinitesimal action defined in (1.2.15) reads, by a straightforward computation,

ξ · ρ = −div(ρ ξ) , (1.2.20)

and the metric on the group of diffeomorphisms is given by

g(ϕ)(ξ, ξ) =

∫
M
|ξ(x)|2ρ(x) dµ0(x) , (1.2.21)

where ρ(x) = dϕ∗µ0
dµ0

.

Since ξ = Xϕ◦ϕ−1, by the change of variable y = ϕ−1(x), the metric on the group
of diffeomorphisms reads

g(ϕ)(Xϕ, Xϕ) =

∫
M
h(Xϕ(y), Xϕ(y)) dµ0(y) , (1.2.22)

which is an L2 metric on the group of diffeomorphisms. Note that for this L2 metric
to be well defined, one needs a Riemannian metric, denoted by h, on the codomain
and a volume measure on the domain, µ0, in this case.

Thus, Proposition 3 applies to this case and we retrieve the submersion intro-
duced by Otto [Ott01], which shows that the map

π : Diff(M)→ Densp(M)

π(ϕ) = ϕ∗(ρ0)

is a formal Riemannian submersion of the metricL2(ρ0) on Diff(M) to theL2-Wasserstein
metric on Densp(M), which is illustrated in Figure 1.1.

Example 6 (LDDMM). The LDDMM framework is based on the action of a group of dif-
feomorphisms of a Euclidean space (or domain denoted by Ω ⊂ Rd) and a left action of this
group of diffeomorphisms on a space of objects that can be images (or 0-forms in mathemat-
ical terms), surfaces or lines in this domain. For instance, in the case of an image, denoting
by I : Ω 7→ R an image, the action of a diffeomorphism and the infinitesimal action are

ϕ · I = I ◦ ϕ−1

ξ · I = −〈∇I, ξ〉

The boundary value problem in LDDMM is thus the following

L(ξ) =

∫ 1

0
‖ξ(t)‖2V dt (1.2.23)

under the constraints

ξ · I = −〈∇I, ξ〉
I(0, x) = I0(x) and I(1, x) = I1(x) .

In fact, in order to clearly look at the similarities and differences with optimal transport,
instead of acting on images, one can act on densities. Let us consider the action on densities
defined above and its infinitesimal action (1.2.20). Therefore, the corresponding optimization
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SDiff(M): Isotropy

subgroup of µ

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

FIGURE 1.1: A Riemannian submersion and SDiff(M) as a Rieman-
nian submanifold of L2(M,M): Incompressible Euler equation on

SDiff(M)

problem leaves the action (1.2.23) unchanged and the constraint becomes:

∂tρ+ div(ρ ξ) = 0

ρ(0, x) = ρ0(x) and ρ(1, x) = ρ1(x) .

This problem is closer to the (1.2.12) formulation, however, it is not a convex optimization
problem. Note in particular that the action (1.2.23) does not involve the current density ρ,
contrary to optimal transport. In contrast to optimal transport which applies to probability
densities, an important feature of the LDDMM framework is its straightforward applications
to natural objects: embeddings, differential forms, metric tensors,..., which makes it versatile
for applications in imaging.

In the situation of Proposition 3, one may be interested by the Riemannian man-
ifold (Q, gQ) and also by the fibers and their induced metric. In particular, H0

def.
=

π−1
0 ({q0}) is a subgroup of G called the isotropy subgroup at point q0. Note that H0

is a submanifold of G and it is endowed with the Riemannian metric induced by gG,
which will be denoted by gH0 . Immediately from the definition, since h · q0 = q0 for
every h ∈ H0, the metric gH0 is right-invariant under the action of H0. It is thus a
standard way to build right-invariant Riemannian metrics. Therefore, we have

Proposition 7. Consider a Riemannian submersion as constructed in Proposition 3. LetH0

be the isotropy subgroup of q0 ∈ Q, then, H0, seen as a Riemannian submanifold of G, has
an induced metric gH0 which is right-invariant (on H0).

This proposition shows that H0 can be seen as a Riemannian submanifold in the
group G endowed with its metric, or as a group with a right-invariant metric.

Note that this remark is useless in the LDDMM framework since the metric is al-
ready right-invariant on the full group, so the induced metric on the isotropy group



10 Chapter 1. Introduction

is a fortiori invariant under itself. However, in the optimal transport framework,
it leads to the L2 right-invariant metric on the group of volume preserving diffeo-
morphisms, denoted by SDiff , for which the geodesic equation is the incompressible
Euler equation, as shown by Arnold in [Arn66]. This point of view has been inves-
tigated by Ebin and Marsden in [EM70] where the authors have taken an intrinsic
point of view on the group of diffeomorphisms as an infinite dimensional weak Rie-
mannian manifold. Formulating the geodesic equation as an ordinary differential
equation in a Hilbert manifold of Sobolev diffeomorphisms, they proved, among
others, local well-posedness of the geodesic equation for smooth enough initial con-
ditions.

The Riemannian submanifold point of view was used by Brenier, motivated by
the variational interpretation of geodesics as minimizers of the action functional.
In particular, his polar factorization theorem [Bre91] was motivated by a numeri-
cal scheme approximating geodesics on the group of volume preserving diffeomor-
phisms. Optimal transport then appeared as a key tool to project a map onto this
group by minimizing the L2 distance and it can be interpreted as a non-linear ex-
tension of the pressure in the incompressible Euler equation. Back to the variational
problem on SDiff , Brenier also used optimal transport in order to define the notion
of generalized geodesics for the incompressible Euler equation in [Bre99].

Let us rewrite the polar factorization theorem of Brenier [Bre91] in a slightly more
general formulation, which is shown in Figure 1.2.

Proposition 8 (A pre-polar factorization). Under the hypothesis of Proposition 3, con-
sider g ∈ G, then there exists h0 ∈ H0 such that the geodesic between h0 and g is the
horizontal lift at point g of a geodesic between g ·q0 and q0. Moreover, if the geodesic between
g · q0 and q0 is unique, then h0 is unique.

This theorem does not explain the full polar factorization result of Brenier since
more structure is available due, in that case, to the convexity associated with the
Wasserstein metric on Densp(M). In this case, the element gh−1

0 is the gradient of
a convex function, thus writing g = ∇ψ ◦ h0 with h0 ∈ SDiff , the set of volume
preserving maps (see [Bre91]).

To conclude this section, let us underline that this geometric point of view obvi-
ously does not alleviate the analytical issues which have to be treated in each partic-
ular case. However, this explains the extension of the polar factorization theorem in
Chapter 3.

1.3 Geodesic equations

In this section, we recall the computation of the geodesic equations in the LDDMM
case. More precisely, the geodesic on the space of shapes and its horizontal lift. We
first start with the geodesic equations on a Lie group with a right-invariant metric
and then detail it for the induced metric.

1.3.1 Geodesics for right-invariant metric and fluid dynamic equations

We quickly describe the derivation of the geodesic equation for a right-invariant
metric on a Lie group. A short proof of the derivation of this equation is given in
[MP10, Theorem 3.2] in the case of a kinetic energy which holds true for general
Lagrangians that are right-invariant. We need the definition of the adjoint and co-
adjoint operators:
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SDiff(M)

Id

g1

h0

(Densp(M),W2) µ g∗µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

FIGURE 1.2: Polar factorization: h0 = arg minh∈SDiff ‖g − h‖L2

Definition 9. Let G be a Lie group and h ∈ G, the adjoint operator Adh : g 7→ g is
defined by

Adh(ξ)
def.
= dLh · dRh−1(ξ) . (1.3.1)

Then, Ad∗h is the adjoint of Adh defined by duality on g. Their corresponding differ-
ential map at Id are respectively denoted by ad and ad∗.

Let G be a Lie group, and L : TG 7→ R be a Lagrangian which satisfies the
following property,

L(g, ġ) = L(Id, dRg−1(ġ)) . (1.3.2)

The reduced Lagrangian is ` : g 7→ R defined by `(ξ) = L(Id, ξ) for ξ ∈ g. Thus, the
variational problem for a reduced Lagrangian reads

inf

∫ 1

0
`(ξ) dt subject to

{
ġ = dRg(ξ)

g(0) = g0 ∈ G and g(1) = g1 ∈ G .
(1.3.3)

In order to compute the Euler-Lagrange equation for (1.3.3), one needs to com-
pute the variation of ξ in terms of the variation of g. It is given by ẇ − adξ w for any
path w(t) ∈ TIdG, therefore, the Euler-Lagrange equation reads

(
∂t + ad∗ξ

) ∂`
∂ξ

= 0 , (1.3.4)

and is called Euler-Poincaré equation. When the Lagrangian is a kinetic energy,
`(ξ) = 1

2〈ξ, Lξ〉, which will be also denoted by 1
2‖ξ‖

2
g, where L : g 7→ g is a quadratic

form and 〈·, ·〉 denotes the dual pairing, one has ∂`
∂ξ = Lξ and Lξ is the so-called

momentum, which will be denoted by m in what follows. Then, the critical curves
are determined by their initial conditions (g(0), ġ(0)) and the Euler-Poincaré equa-
tion (1.3.4). In the context of infinite dimensional Riemannian manifolds enjoy-
ing a group structure, this equation is called the Euler-Arnold equation [Arn66].
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Let us compute more explicitely the Euler-Arnold equation and detail the expres-
sion of the adjoint Ad∗h which acts on 1-forms. Let m be a 1-form density, then
Ad∗ϕ(m) = DϕT (m ◦ ϕ) Jac(ϕ) and therefore the differentiation w.r.t. ϕ, the flow
of the vector field u, gives

ad∗u(m) = div(u)m +DuT ·m +Dm · u . (1.3.5)

Thus, the Euler-Arnold equation reads{
∂tmt + div(ut)mt +DuTt ·mt +Dmt · ut = 0

Lut = mt ,
(1.3.6)

where L is the differential operator defining the metric. A more geometrical way of
writing this equation is the following,

∂tmt + Lutmt + div(ut)mt = 0 , (1.3.7)

or alternatively
(∂t + Lut) (mt ⊗ vol) = 0 , (1.3.8)

together with the relation Lut = mt.
Some important examples in fluid dynamics of the Euler-Arnold equation are

given hereafter. For the L2 metric in one dimension, Lu = u, one has

∂tu+ 3∂xuu = 0 , (1.3.9)

which is the inviscid Burgers equation. For the Hdiv metric in one dimension, Lu =
u− ∂xxu, one has the Camassa-Holm equation (actually when a = b = 1)

a2∂tu− b2∂txxu+ 3a2∂xuu− 2b2∂xxu ∂xu− b2∂xxxuu = 0 . (1.3.10)

The Korteweg-de Vries equation can also be understood in this setting on a central
extension of the group Diff(S1). In the case where G = SDiff(M) is the group of vol-
ume preserving diffeomorphisms, the Euler-Arnold equation is the incompressible
Euler equation

∂tu+∇uu = −∇p , div(u) = 0 . (1.3.11)

Let us detail the case of the Hdiv(Td) where Td def.
= Rd/Zd metric which is given

in [KLMP13, Theorem A.1]. The differential operator takes the form Lu = a2u +
b2∇ div(u) which gives

∂tLu+ a2

(
div(u)u+

1

2
∇〈u, u〉+Du · u

)
+

b2
(

div(u)∇ div(u) +DuT · ∇ div(u) +D[∇ div(u)] · u
)

= 0 . (1.3.12)

In fact, this equation can be extended to a general Riemannian manifold.

1.3.2 Geodesic for LDDMM

The geodesic equations on the orbits for the induced metric (by the Riemannian
submersion) of a right-invariant metric are in correspondence with their horizontal
lifts on the group.
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We start with a few useful definitions. The tangent lift of Φ is defined as the
action of G on TQ,

G× TQ→ TQ, (g, vq) 7→ g · vq := TΦg(vq), (1.3.13)

with infinitesimal generator ξTQ corresponding to ξ ∈ V . Similarly, one defines the
cotangent lifted action as

G× T ∗Q→ T ∗Q, (g, p) 7→ g · p := (TΦg−1)∗(p) , (1.3.14)

and the associated infinitesimal action will be denoted by −ξ∗ · p. The momentum
map J : T ∗Q→ V ∗ associated with the cotangent lift of Φ is given by

〈J(p, q), ξ〉V ∗×V = 〈p, ξ · q〉T ∗Q×TQ , (1.3.15)

for arbitrary p ∈ T ∗qQ and ξ ∈ V .
Using the Lagrange multiplier method, the minimizers of the LDDMM func-

tional are critical points of the augmented functional

J (ξ, p, q) =

∫ 1

0

1

2
‖ξ(t)‖2V dt+ S(q(1)) +

∫ 1

0
(p(t), q̇(t)− ξ(t) · q(t))T ∗q Q,TqQ dt ,

(1.3.16)
which leads to the Euler-Lagrange equations:

q̇(t) = ξ(t) · q(t)
ṗ(t) = −ξ∗(t) · p(t)
ξ(t) = KJ(p(t), q(t)) ,

(1.3.17)

where the notation −ξ(t)∗ · p(t) is the infinitesimal coadjoint action. For instance, in
the case of functions I : M 7→ R, the system is

İ(t) + 〈∇I(t), v(t)〉 = 0

Ṗ (t) + div(P (t)v(t)) = 0

v(t) +K(P (t)∇I(t)) = 0 ,

(1.3.18)

which is used in Chapter 4. Note, that written on densities instead of functions, the
corresponding system simply swaps the two first equations of system (1.3.22). The
gradient of Functional (1.3.16) can be written as:

∇J (t) = ξ(t)−KJ(p(t), q(t)) , (1.3.19)

where q(t) solves the forward flow equation q̇ = ξ(t) · q(t) with q(0) = q0 and p(t)
solves the adjoint equation

ṗ(t) = −ξ∗(t) · p(t) , (1.3.20)

with the boundary condition p(1) = [∂q]q=q(1)S(q(1)). In particular, one has to solve
the adjoint equation backward in time, to compute the gradient.

The horizontal lift of the geodesic q(t) is simply given by the vector field ξ(t) =
KJ(p(t), q(t)), so that ξ(t) satisfies the Euler-Poincaré equation (1.3.4), as is shown
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by the following computation,

d

dt
(J(p(t), q(t)), w)V ∗,V = (ṗ(t), w · q(t)) + (p(t), w · q̇(t))

= (−dξ(t)∗(q(t))(p(t)), w · q(t)) + (p(t), dw(ξ(t)) · q(t))
= (p(t),−dξ(t)(w) · q(t)) + (p(t), dw(ξ(t)) · q(t))
=
(
p(t),− adξ(t)(w) · q(t)

)
=
(
− ad∗ξ(t) J(p(t), q(t)), w

)
V ∗,V

which implies
d

dt
J(p(t), q(t)) + ad∗ξ(t) J(p(t), q(t)) = 0 , (1.3.21)

and the conservation of the momentum: d
dt [Adϕ(t)∗(J(p(t), q(t)))] = 0.

In addition, the system (1.3.17) are the Hamiltonian equations associated to the
Hamiltonian H(p, q) = 1

2‖J(p(t), q(t))‖2V .

Remark 10. These geodesic equations (1.3.17) can be compared with optimal transport, for
which the geodesic equations can be formulated in a smooth context,{

ρ̇+ div(ρ∇P ) = 0

Ṗ + 1
2 |∇P |

2 = 0 .
(1.3.22)

In particular, the equation on P does not depend on the current density ρ.

From a numerical point of view, the formulation (1.3.17) is preferably used when
the dimensionality ofQ is lower than that of the (discretized) diffeomorphisms group,
for instance often in the case of landmarks (group of points). Note that in this case,
a lot is known on the geometry of the group [MMM13] and in particular curvature.

1.4 Contributions

In this section, we list the contributions we made in our research articles and we de-
tail the cases where the work has been developed in collaboration with a student or
a post-doc. Note that this document is based on existing material from our research
articles, although sometimes presented with a slightly different point of view. More-
over, the introduction presents a common geometric framework between LDDMM
and optimal transport, which, to the best of our knowledge, has not been written
elsewhere.

Contributions to the theory of LDDMM and shape spaces. (Chapter 2)

1. In [BV17], we prove that completeness results for the group of diffeomor-
phisms equipped with a strong right-invariant Sobolev metric hold in all the
meanings of the Hopf-Rinow theorem (which is valid in infinite dimensions).
The strategy developed in the paper consists in merging the approach of Ebin
and Marsden in [EM70] and the direct method in calculus of variation to obtain
the desired results.

2. We introduced in [VT12] the use of second-order variational problems on the
group of diffeomorphisms and shape spaces and, together with our coauthors,
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we extended to higher-order in [GHM+12a]. In [TV16], we study the corre-
sponding variational problem on the group of diffeomorphisms in a simple
case and compute the relaxation of it.

3. On the space of curves in the plane, we studied a Finsler type of metric which
favors piecewise rigid motion, motivated by [CNPV16]. The main result of
[NPV16] is a proof of existence of shortest paths. This result is also generalized
to the case of Hs inner metric on closed curves, for s > 3/2.

Contributions to unbalanced optimal transport and its link to fluid dynamic equa-
tions (Chapter 3).

1. We solved one issue related with the application of optimal transport to real
data, the problem of total volume normalization:
We introduced the equivalent to the L2 Wasserstein metric in the case of non-
negative Radon measures. The study of this new metric, which we called the
Wasserstein-Fisher-Rao metric was the starting project of Lenaïc Chizat’s PhD
thesis [CSPV16]. Generalizing Otto’s Riemannian submersion, we proposed
to Lenaïc Chizat and Bernhard Schmitzer to study the corresponding static
formulation [CPSV15], with in mind the goal of developing fast numerical al-
gorithms based on entropic regularization, later developed in [CPSV16].

2. In [GV16], we make the link between the Wasserstein-Fisher-Rao metric and
the Camassa-Holm equation in fluid dynamics, which is the same than the
link between the L2 Wasserstein metric and the incompressible Euler equation.
Among others, we prove an extension of the polar factorization theorem to this
unbalanced case and we show a rather surprising result: The Camassa-Holm
equation, which is a 1D PDE can be lifted in 2D as a sort of incompressible
Euler equation for a radial density which has a singularity at 0.

Contributions on the practical implementation and applications of LDDMM (Chap-
ter 4).

1. We made practical and substantial contributions to the choice of the right-
invariant metric in the LDDMM method, sometimes by contributing to the the-
ory or extending the framework. The paper [RVW+11] emphasizes the choice
of the kernel and introduce the use of sum of gaussian kernels to produce more
plausible deformations, while its corresponding geometrical structure is un-
covered in [BRV12]. In [SRV13], we depart from the LDDMM framework to
make sense of spatially varying kernels. Finally, in [VR14], we propose a sim-
ple variational approach to learn the parameters of the metric.
These methods are implemented in the software Utilzreg freely available at
http://sourceforge.net/projects/utilzreg/. We were involved in
the development of this C++ code from 2010 to 2014.

2. In [FCVP17], we introduced the use of entropic optimal transport as a similar-
ity measure in diffeomorphic image matching. This new similarity measure is
smooth, convex and represents a global similarity measure which helps avoid-
ing bad local minima.

3. In [NHV11], we extended geodesic regression to the case of images in the
LDDMM framework, based on an algorithm we developed in [VRRC12]. In
[FRR+14], together with J.B. Fiot, a PhD student of L. Cohen, we develop a

http://sourceforge.net/projects/utilzreg/


16 Chapter 1. Introduction

method based on the tangent space representation and the algorithm devel-
oped in [VRRC12] to perform classification on longitudinal data in medical
imaging. His results showed that statistically meaningful informations were
present in the longitudinal evolutions.



17

Chapter 2

Variational problems on
diffeomorphisms and shape spaces

Our contributions are the following:

1. We prove in [BV17] metric completeness on the group of diffeomor-
phisms endowed with a strong right-invariant Sobolev metric, provided
its smoothness and that between any two diffeomorphisms of a given con-
nected component, there exists a minimizing geodesic.

2. Minimizing the acceleration on the group of diffeomorphisms was pro-
posed in [GHM+12a, GHM+12b, VT12] but the theoretical study was left
open. We study this variational problem in the particular case of the group
of diffeomorphisms of the interval [0, 1], endowed with a right-invariant
Sobolev metric of order 2. We compute the relaxation of this variational
problem, in which appears the so-called the Fisher-Rao functional, a con-
vex one-homogeneous functional on the space of measures.

3. On the space of closed curves in the plane, we studied a Finsler type of
metric which favors piecewise rigid motion. The main result of [NPV16] is
a proof of existence of shortest paths, which is also generalized to strong
Sobolev metrics.

2.1 Introduction

In this chapter, we give a summary of our theoretical contributions on theoretical
questions on shape spaces [BBM14]. Our contributions are concerned with varia-
tional calculus on the space of shapes and in particular completeness results once
a Riemannian or Finsler structure is given. That is global well posedness of the
geodesic equation, metric completeness (which is stronger) and the existence of
shortest paths. Such questions are also relevant for higher-order models, which we
also address in a simple situation.

We gave a particular interest to the framework of LDDMM in which we studied
the case of strong right-invariant metric on the group of diffeomorphisms. Let M be
either Rd or a compact manifold without boundary of dimension d. The group GV ,
defined in formula (1.2.5), is a priori not a differentiable manifold nor a topological
group (the inversion need not be continuous). However, for certain choices of spaces
V , such structures are available and therefore more properties can be derived in this
situation. Indeed, consider the group Ds(M), with s > d/2 + 1, which consists of all
C1-diffeomorphisms of Sobolev regularity Hs. It is known since the work of Ebin
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and Marsden [EM70] that Ds(M) is a smooth Hilbert manifold and a topological
group. It only remains to prove that GHs = Ds0(M) (the connected component of
identity) which is done in [BV17, Section 8]. When such structures are available, it
is possible to study higher-order problems on the group of diffeomorphisms such as
acceleration minimizing curves.

Strong right-invariant Sobolev metrics. The first contribution is concerned with
the problem of geodesic completeness of the group of diffeomorphisms endowed
with a strong right-invariant Sobolev metric. Historically most papers dealt with
right-invariant Sobolev metrics on diffeomorphism groups in the weak setting, that
is one considered Hr-metrics on Ds(M) with s > r; a typical assumption is s > 2r+
d/2 + 1, in order to ensure that Lu is still C1-regular. The disconnect between order
of the metric and regularity of the group arose, because one was mostly interested
in L2 or H1-metrics, but Ds(M) is a Hilbert manifold only when s > d/2 + 1. It
was however noted already in [EM70] and again in [MP10], that the Hs-metric is
well-defined and more importantly smooth on Ds(M), for integer s when the inner
product is defined in terms of a differential operator. The smoothness of the metric
is not obvious, since it is defined via

Gϕ(Xϕ, Yϕ) = 〈Xϕ ◦ ϕ−1, Yϕ ◦ ϕ−1〉Hs

and the definition uses the inversion, which is only a continuous, but not a smooth
operation onDs(M). In order to understand the smoothness of the metric, one needs
to make the change of variable y = ϕ−1(x) and write

Gϕ(Xϕ, Yϕ) =

∫
M
〈Xϕ(y), (L(Yϕ ◦ ϕ−1) ◦ ϕ〉 Jac(ϕ) dµ , (2.1.1)

which makes appear the operator Lϕ
def.
= Jac(ϕ)(L(Yϕ ◦ϕ−1)◦ϕwhich can be alterna-

tively written as Lϕ = R∗ϕ−1 ◦L ◦Rϕ−1 = Jac(ϕ)Rϕ ◦L ◦Rϕ−1 where Rψ denotes the
right composition with ψ and R∗ψ its adjoint. There are at least two different ways to
understand why the operator has a chance to be smooth with respect to ϕ. The first
one consists in writing Lϕ(X) using the derivatives of Y and ϕ and realizing that
the expression is rational in [Dϕ]−1 and Jac(ϕ) and the derivatives of Y . Therefore,
using the fact that Hs is a Hilbert algebra for s > d/2, one can conclude that it is
smooth. It is actually a proof of its smoothness. However, this proof does not extend
to the case when L is not a differential operator but a general elliptic Fourier multi-
plier, although the result still holds, see [Kol16]. The proof of it uses the similarity
of Lϕ with the adjoint action of Lie groups. Indeed, differentiation w.r.t. ϕ leads to
a commutator between two operators. If the operator L were a differential operator,
then the order of the commutator would be the same than L and this would give
another proof of the smoothness. Indeed, one has

d

dε
Rϕ ◦ L ◦Rϕ−1 = Rϕ ◦ (∇ξ ◦ Lϕ − Lϕ ◦ ∇ξ) ◦Rϕ−1 (2.1.2)

where ϕ is the flow of the vector field ξ. In the general case, one is left with the
estimation of this commutator in order to prove the smoothness which is done in
[Kol16]. Higher order Sobolev metrics have been studied recently on diffeomor-
phism groups of the circle [CK03], of the torus [KLT08] and of general compact
manifolds [MP10].
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One interesting property of strong Riemannian metrics on the diffeomorphism
group is that the exponential map is locally well defined by the Gauss lemma valid
in this infinite dimensional setting.

Higher-order variational problems: In [VT12], we introduced the use of cubic
splines in the space of shapes to interpolate a sequence of shapes that are time de-
pendent. Riemannian cubics (also called Riemannian splines) and probably more
famous, its constrained alternative called Elastica belong to a class of problems that
have been studied since the work of Euler (see the discussion in [Mum94]). Let us
present the variational problem in a Riemannian setting. Riemannian splines are
minimizers of

J (x) =

∫ 1

0
g

(
D

Dt
ẋ,

D

Dt
ẋ

)
dt , (2.1.3)

where (M, g) is a Riemannian manifold, D
Dt is its associated covariant derivative and

x is a sufficiently smooth curve from [0, 1] inM satisfying first order boundary condi-
tions, i.e. x(0), ẋ(0) and x(1), ẋ(1) are fixed. The case of Elastica consists in restricting
the previous optimization problem to the set of curves that are parametrized by unit
speed (when the problem is feasible), namely g(ẋ, ẋ) = 1 for all time.

This type of variational problems has been several times introduced and studied
in applied mathematics [BBT65, LF73, NHP89, CLP95, CL95, GG02, Koi92] as well
as in pure mathematics [Bis11, LS84, BG86] and it was then extensively used and nu-
merically developed in image processing and computer vision [Mum94, CGMP11,
USK15, SASK12, BK94, CKKS02]. In the past few years, higher-order models have
been introduced in biomedical imaging for interpolation of a time sequence of shapes.
They have been introduced in [VT12] for a diffeomorphic group action on a finite
dimensional manifold and further developed for general invariant higher-order la-
grangians in [GHM+12a, GHM+12b] on a group. A numerical implementation to-
gether with a generalized model have been proposed in [SVN15] in the context of
medical imaging applications. What is still unsolved in the case of a group of dif-
feomorphisms, is the question of existence and regularity where the main obstacle
is caused by the infinite dimensional setting.

In infinite dimensions, to the best of our knowledge, only the linear case has been
addressed [Mic02]. Actually, in the non-linear case, the case of Riemannian metrics
in infinite dimensions, existence of minimizing geodesics is already non-trivial as
shown by Atkin in [Atk97], where an example of a geodesically complete Rieman-
nian manifold is given such that the exponential map is not surjective. Therefore,
Elastica or Riemannian splines will preferably be studied on Riemannian manifolds
where all the properties of the Hopf-Rinow theorem fully hold.

As presented below, only recently it has been proven in [BV17] that the group of
diffeomorphisms endowed with a right-invariant Sobolev metric of high enough or-
der is complete in the sense of the Hopf-Rinow theorem. Motivated by this positive
result, we explore the minimization of the acceleration in the one dimensional case,
which is the first step towards its generalizations to higher dimensions.

2.2 Completeness results on the group of diffeomorphisms

This section is based on joint work with M. Bruveris in [BV17].
In this section, we present our contributions on this topic. First we want to show

that strong, smooth Sobolev metrics on Ds(M) are complete both geodesically, met-
rically and that there exist minimizing geodesics between any two diffeomorphisms.
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We recall here that the Hopf-Rinow theorem is not valid in infinite dimensions,
namely Atkin gives in [Atk75] an example of a geodesically complete Riemannian
manifold where the exponential map is not surjective. For the Sobolev diffeomor-
phism group with s > d/2 + 1, the best known result can be found in [MP10, Thm.
9.1] which is an improvement of the positive result of Ekeland [Eke78].

Geodesic completeness was shown for diffeomorphism group of the circle in
[EK13] and in weaker form on Rd in [TY05a] and [MM13]. Metric completeness
and existence of minimizing geodesics in the context of groups of Sobolev diffeo-
morphisms and its subgroups is — as far as we know – new. We prove the following
theorem:

Theorem 11. Let M be Rd or a closed manifold and s > d/2 + 1. If Gs is a smooth,
right-invariant Sobolev-metric of order s on Ds(M), then

1. (Ds(M), Gs) is geodesically complete;

2. (Ds(M)0,dists) is a complete metric space;

3. Any two elements of Ds(M)0 can be joined by a minimizing geodesic.

The statements also hold for the subgroups Dsµ(M) and Dsω(M) of diffeomorphisms preserv-
ing a volume form µ or a symplectic structure ω.

The crucial ingredient in the proof is showing that the flow map

Flt : L1(I,Xs(M))→ Ds(M) (2.2.1)

exists and is continuous. The existence was known for vector fields in C(I,Xs(M))
and the continuity as a map into Ds′ for s′ < s was shown in [Inc12]. We extend the
existence result to vector fields that are L1 in time and show continuity with respect
to the manifold topology. The flow map allows us to identify the space of H1-paths
with the space of right-trivialized velocities,

Ds(M)× L2(I,Xs(M))
∼=−→ H1(I,Ds(M)), (ϕ, u) 7→ Fl(u) ◦ ϕ .

Since L2(I,Xs(M)) is a Hilbert space, we can use variational methods to show the
existence of minimizing geodesics.

In order to show metric completeness, we derive the following estimate on the
geodesic distance,

‖ϕ− ψ‖Hs ≤ C dists(ϕ,ψ) ,

which is valid on a bounded metric dists-ball. In other words, the identity map
between the two metric spaces

Id :
(
Ds(Rd), ‖ · ‖Hs

)
→
(
Ds(Rd), dists

)
is locally Lipschitz continuous. For compact manifolds we show a similar inequality
in coordinate charts. The Lipschitz continuity implies that a Cauchy sequence for
dists is a Cauchy sequence for ‖ · ‖Hs , thus giving us a candidate for a limit point.
One then needs proceeds to show that the limit point lies in the diffeomorphism
group and that the sequence converges to it with respect to the geodesic distance.
Finally, we show the existence of minimizing geodesics between any two diffeomor-
phisms in the same connected component. This extends Thm. 9.1 in [MP10], where
existence of minimizing geodesics was shown only for an open and dense subset.
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This existence result is shown using the direct method of the calculus of variations.
Namely, the variational problem we consider consists in the minimization of an en-
ergy which is, under a change of variables, a weakly lower semi-continuous func-
tional on a weakly closed constraint set. The change of variables is simply given by
the vector field associated with the path and in the next lemma, we also prove that
the constrained set is weakly closed.

On the analysis of the LDDMM framework, the paths solving the image regis-
tration problem are smooth. We also obtain, in [BV17, Section 8], using the proximal
calculus on Riemannian manifolds [AF05] that Karcher means (points that minimize
the sum of the squared distances to a given finite number of points) of k diffeomor-
phisms – and more generally shapes – are unique on a dense subset of the k-fold
product Ds × . . .×Ds.

Open question 12. Consider the group Ds(M) and two diffeomorphisms in Dk(M) with
k > s. Does any geodesic joining the two lies in Dk(M)? Locally, due to the Gauss lemma
and the "no loss no gain" result of [Kol16], the answer is positive but the answer is not
known globally, in particular when the exponential map is not invertible. In the article
[TV16], we show that the answer is positive in a particular case M = [0, 1] on the group of
H2 diffeomorphisms which is identity on the points 0 and 1 (at first order).

2.3 Minimization of the acceleration

We present hereafter some of the results obtained in [GHM+12a] and the relaxation result
of [TV16], wich is a joint work with R. Tahraoui. One of the motivation of this work
can be found in [VT12] where the finite dimensional case of landmarks was treated.
Figure 2.1 shows three different types of interpolations: the first column is geodesic
interpolation where the time sequence of curves (in white) is interpolated in time
(time is the z axis); the second column is piecewise geodesic interpolation; the last
one is cubic spline interpolation, which is our interest in this section. Note that
for application, only the first and third columns present an interesting dimension
reduction compared to the full sequence of data. A question of mathematical interest

FIGURE 2.1: Different types of shape interpolation: geodesic inter-
polation, piecewise geodesic, cubic spline interpolation. The interpo-
lated shapes are represented in white and are group of points in 2D.
On the first two columns, the color change represents the time evolu-

tion.

is the extension of cubic splines to the infinite dimensional setting. We give some
insights on the question of existence hereafter.
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2.3.1 Invariant higher-order variational problems

In [GHM+12a], higher-order models are proposed on groups of diffeomorphisms
but for the standard Riemannian cubics functional, no analytical study was pro-
vided. However, the formulation of the Euler-Lagrange equation in reduced coordi-
nates is simple enough to summarize some of the results in [GHM+12a]. Namely, let
L : T kG 7→ R be a Lagrangian defined on the kth order tangent bundle, then a curve
g : [t0, t1]→ G is a critical curve of the action

J [q] =

∫ t1

t0

L
(
g(t), ġ(t), ...., g(k)(t)

)
dt (2.3.1)

among all curves g(t) ∈ G whose first (k − 1) derivatives are fixed at the endpoints:
g(j)(ti), i = 0, 1, j = 0, ..., k − 1, if and only if g(t) is a solution of the kth-order
Euler-Lagrange equations

k∑
j=0

(−1)j
dj

dtj
∂L
∂g(j)

= 0 . (2.3.2)

Now, an invariant higher-order Lagrangian is completely defined by its restriction
on the higher-order tangent space at identity. As a consequence, the Lagrangian
(2.3.1) can be rewritten as

L
(

[g]
(k)
g(t0)

)
= `

(
v(t0), v̇(t0), . . . , v(k−1)(t0)

)
,

where v def.
= dRg−1(ġ) as detailed in [GHM+12a]. The corresponding higher-order

Euler-Poincaré equation is

(∂t + ad∗v)

k−1∑
j=0

(−1)j∂jt
δ`

δv(j)
= 0 . (2.3.3)

Let us instantiate it in the case of the Lagrangian (2.1.3) for which the previous
setting applies. Indeed, in the case of a Lie group G with a right-invariant metric,
the covariant derivative can be written as follows: Let V (t) ∈ Tg(t)G be a vector field
along a curve g(t) ∈ G, ν(t) = dRg−1(V (t)) and ξ(t) = dRg−1(ġ),

D

Dt
V =

(
ν̇ +

1

2
ad†ξ ν +

1

2
ad†ν ξ −

1

2
[ξ, ν]

)
G

(g) , (2.3.4)

where ad† is the metric adjoint defined by

ad†ν κ := (ad∗ν(κ[))]

for any ν, κ ∈ g where [ is the isomorphism associated with the metric fromg to
g∗ and ] is its inverse. They correspond to raising and lowering indices in tensor
notation.

Therefore, the reduced lagrangian for (2.1.3) is

J (g) =

∫ 1

0
‖ξ̇ + ad†ξ ξ‖

2
g dt . (2.3.5)
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For this Lagrangian, the Euler-Lagrange equation (2.3.3) reads(
∂t + ad†ξ

)(
∂tη + ad†η ξ + adη ξ

)
= 0 where η := ξ̇ + ad†ξ ξ. (2.3.6)

While this formula is compact, it is a formal calculation in the case of the group
of diffeomorphisms since there is a loss of smoothness which is already present in
the acceleration formula (2.3.6). This formula also resembles closely to the Jacobi
field equations for such metrics which was used in [MP10] and for which an integral
formulation is available [MP10, Proposition 5.5]. This is of course expected due to
Formula (2.3.7) below.

There is however a clear obstacle to use reduction for variational analysis since
the operator ad† is unbounded on the tangent space at identity due to the loss of
derivative. Following [EM70], one can use the smooth Riemannian structure on Ds
to check that the functional (2.1.3) is well defined. The following proposition of
[GG02] is valid in infinite dimensions:

Proposition 13. Let (M, g) be an infinite dimensional strong Riemannian manifold and

Ω0,1(M) := {x ∈ H2([0, 1],M) |x(i) = xi , ẋ(i) = vi for i = 0, 1}

be the space of paths with first order boundary constraints for given (x0, v0) ∈ TM and
(x1, v1) ∈ TM . The functional (2.1.3) is smooth on Ω0,1(M) and

J ′(x)(v) =

∫ 1

0
g

(
D2

Dt2
v̇,
D

Dt
ẋ

)
− g

(
R

(
ẋ,

D

Dt
ẋ

)
, v

)
dt .

A smooth curve x is a critical point of J if and only if it satisfies the Riemannian cubic
equation

D3

Dt3
ẋ−R

(
ẋ,

D

Dt
ẋ

)
ẋ = 0 . (2.3.7)

The critical points of J are called Riemannian cubics or cubic polynomials. In
Euclidean space, the curvature tensor vanishes and one recovers standard cubic
polynomials. In this paper, we will be interested in existence of minimizers for the
functional (2.1.3) in the case of the group of diffeomorphisms endowed with a strong
right-invariant metric. The existence of minimizers (and the fact that J satisfies the
Palais-Smale condition) does not follow from the corresponding proof in [GG02]
since it strongly relies on the finite dimension hypothesis and compactness of balls.
Moreover, as shown above, it is not possible to follow the proof of [BV17] since the
reduced functional (2.3.5) is not well defined on the tangent space at identity. There-
fore, it is useful to write the variational problem in Lagrangian coordinates, taking
advantage of the smoothness of the metric.

2.3.2 Main result and strategy of proof

The smoothness of the metric is not enough to deal with the problem of existence of
minimizing geodesics and the well-known example is the work of Brenier on gener-
alized solutions of Euler equation [Bre89]. As explained above, a technical important
difference is that the L2 metric on the space of diffeomorphisms is a weak metric in
the sense of Ebin and Marsden [EM70], whereas we work with a strong metric. The
group of diffeomorphisms (actually Hs diffeomorphisms) endowed with a right-
invariant Sobolev metric of order s > d/2 + 1 is complete for all the meanings of the
Hopf-Rinow theorem as proven in [BV17]. Passing to second-order derivatives has
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been less treated from a variational point of view, and to the best of our knowledge
it has never been addressed in the case of right-invariant metrics on the group of
diffeomorphisms.

We now present the three main steps developed in [TV16]. The first step is to
choose a convenient formulation of the acceleration which is done . The first techni-
cal choice follows Ebin and Marsden [EM70] and it consists in writing the accelera-
tion in Lagrangian coordinates instead of Eulerian coordinates. The point is to avoid
the loss of smoothness of the Eulerian formulation. The second choice which ap-
pears the most important from an analytical point of view consists in using the sec-
ond derivative of the diffeomorphism as the main variable to compute the geodesic
equation. We therefore work on H2

0 ([0, 1]) in order to avoid boundary terms. At this
step, we strongly use the one dimensional setting. This simple change of variable
leads to geodesic equation that have a Hamiltonian formulation enjoying important
analytical properties. Let us give an overview of the new set of equations. Now the
variable q represents a function in L2([0, 1]) and thus the dual space can be identified
with L2([0, 1]), we have the following formulation, withH being the Hamiltonian{

q̇ = ∂pH(p, q) = K(q)(p)

ṗ = −∂qH(p, q) = −B(q)(p, p) ,
(2.3.8)

whereK(q) is a bounded linear operator on L2([0, 1]) which is continuous w.r.t. q for
the weak topology. As is well-known, K(q) is the inverse of the metric tensor. The
operator B(q) is bounded as a bilinear operator on L2 and is continuous w.r.t. q for
the weak topology. However, it is not continuous w.r.t. to p for the weak topology
due to the bilinear structure.

Importantly, the operatorB is non-local and therefore, the acceleration functional
(2.3.11) written below is not the integral of a Caratheodory type integrand. This non-
local term is more precisely U(p2, q) where U is defined by

U(f, q)(x)
def.
=

1

2

∫ 1

x
η(q)f dy , (2.3.9)

where η(q) is defined by

η(q)(x) = exp

(∫ x

0
q(u) du

)
. (2.3.10)

In such cases, there does not exist a general theory of relaxation and the relaxation
formulation has to be studied directly.

Thus, the second step consists in studying the relaxation of the acceleration func-
tional, which is the lower semi continuous enveloppe of it. The functional can be
written as follows

J (p, q) =

∫ 1

0
‖K(q)1/2(ṗ+B(q)(p, p))‖2L2 dt+ P (p(1), q(1)) (2.3.11)

where P is a relaxation of the endpoint constraint at time 1 which is lower continous
for the weak topology. Expanding the quadratic term, we have to deal with the weak
limit of 〈ṗ,K(q)ṗ〉 denoted by ν and the weak limit ofB(q)(p, p) which only involves
the weak limit of p2 denoted by µ. These two weak limits are related to each other.
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The relation is given by the following inequality

(∂t
√
µ)2 ≤ ν . (2.3.12)

In fact, Equation (2.3.12) can be made rigorous using the Fisher-Rao functional which
is a convex functional on measures on the time space domain D = [0, 1]2 defined by

FRf (µ, ν) =

∫
D

1

4

ρ2
ν

ρµ
f dλ

where f is a positive and continuous weight function on D and ρν and ρµ are the
densities of µ and ν with respect to a dominating measure λ. Now, formula (2.3.12)
can be rewritten as

FR(µ, ∂tµ) ≤ ν . (2.3.13)

as linear operators on continuous positive functions f on the domain D. Therefore,
the relaxation of J will make appear the Fisher-Rao term FR(µ, ∂tµ). Let us under-
line that informally, this is the cost associated with the oscillations that are gener-
ated on p. However, in order to prove that the relaxation of the functional exactly
involves this quantity we have to construct explicitly the oscillations that generate
the measure µ at the given cost FR(µ, ∂tµ). This is a technical step that relies on the
construction of solutions to the first equation of the Hamiltonian system and also on
an explicit construction of the oscillations. In summary, the main result is thus the
following,

Main result. The relaxation of the acceleration functional,

J (p, q) =

∫ 1

0

∥∥∥∥∥
(
D

Dt
q̇

)[∥∥∥∥∥
2

q

dt+ P (p(1), q(1)) , (2.3.14)

with boundary conditions p(0), q(0) and P a continuous (w.r.t. weak convergence) penal-
ization term can be written as

F(∆, p, q) = FRη(∆, ∂t∆) +

∫ 1

0

∥∥∥∥∥
(
D

Dt
q̇

)[
+ π∗q (U(∆, q))

∥∥∥∥∥
2

q

dt+ P (p(1), q(1)) ,

(2.3.15)
where ∆ is a time dependent nonnegative Radon measure and ∂t∆ is a Radon measure.
In addition, ‖·‖q is the norm of the scalar product on the cotangent space,

(
D
Dt q̇
)[ is the

acceleration on the cotangent space, π∗q is a projection which depends on q through integral
terms. The map U defined in (2.3.9) is linear with respect to ∆.

In particular, at the expense of the Fisher-Rao energy, one could possibly de-
crease the relaxed energy F . The last step consists in standard analysis of optimality
conditions of the above functional by means of convex analysis. Note that this new
variational problem is convex in ∆ but non convex in (p, q,∆).

2.3.3 Open questions and applications

We have studied the relaxation of the acceleration in the case of a right-invariant
Sobolev metric on the group of diffeomorphisms in one dimension. We have shown,
that for the relaxed endpoint constraint, the relaxation of the functional involves the
Fisher-Rao functional. Being a convex and one-homogeneous functional on mea-
sures, we have derived several optimality conditions by means of convex analysis:
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optimality is linked to the existence of a solution to a Riccati equation that involves
the acceleration of the curve.

Several interesting questions remain open:
(1) We have proved the existence of an example where the minimizer of the re-
laxed acceleration functional has a non zero defect measure. In other words, we
ask whether all the minimizers of the relaxed acceleration functional satisfy ∆ = 0.
At least, prove that smooth solutions of the Euler-Lagrange equation are solutions
of the relaxed problem at least for short times.
(2) Another important point is to add a boundary hard constraint at time 1 on the
couple (p, q). It is probable that the relaxation will involve a different form of the
Fisher-Rao metric.
(3) Our proof relies at different steps on the one dimensional case. For instance, the
formulation of the geodesic equations was a key point for obtaining the properties
on the derivative of the metric. This step can probably be extended to higher di-
mensional case, i.e. on Diffs([0, 1]d) for s > d/2 + 1. However, the relaxation of the
functional will certainly differ from the Fisher-Rao functional.
(4) In a different direction, we could also have written the Euler-Lagrange equations
for the relaxed functional on the space CR. An interesting question would be to use
this Euler-Lagrange equation to derive regularity properties of the solutions from
the endpoints such as in the geodesic case.
(5) We also have left behind a technical question about the characterization of the
subdifferential of the Fisher-Rao functional similarly to what has been done for the
TV norm on functions. This would lead to a finer characterization than the one
presented in the paper.

For practical applications, and in particular interpolation of a time sequence
of shapes, one has often the freedom to design the cost functional as well. There-
fore, as long as the interpolation is feasible, it is possible to propose a variational
model that will be well posed, by measuring the acceleration with a stronger
norm, for instance Sobolev of order s′ > s + 1. This type of approach has been
implemented in [SVN15].

2.4 Boundary value problem on the space of curves

This section is based on joint work with G. Nardi (Post-doc) together with G. Peyré in
[CNPV16].

Motivated by our work on piecewise rigid curve evolution [CNPV16], we study
in [NPV16] on a Finsler metric on the space of curves embedded in R2. This Finsler
metric is designed to reproduce piecewise regular deformations. We actually pro-
posed and studied a BV metric on the first derivative of the curve, therefore de-
noted by BV 2. For this metric, piecewise regular motion is possible and in fact,
favored due to the BV penalization. The main contribution of the paper consists in
proving existence to the boundary value problem, i.e. there exists a shortest path
between any two curves in the space. The proof of this result is based on two in-
gredients. The first one consists in using the constant speed reparametrization and
the second one puts forward a somewhat unusual approach in this field: it is based
on the construction of a martingale with values in BV 2(S1,R), where S1 is the unit
circle, which appears to be a bounded martingale in H1(S1,R) and therefore, since
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this space has the Radon-Nicodym property, the martingale converges p.s., its limit
defining a length minimizing path.

We also applied the same method to the case of Sobolev metrics to prove exis-
tence of length minimizing paths to give a complementary result to [BMM19].
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Chapter 3

Unbalanced optimal transport and
the Camassa-Holm equation

When this work started, no equivalent to the L2 Wasserstein distance in the
case of nonnegative Radon measures was available. We introduced this new
distance, using a dynamic formulation. We proved the equivalence of this dy-
namic model with a static formulation, in view of applying entropic regular-
ization for numerical computation. This chapter is a summary of some of two
related different contributions: (1) Unbalanced optimal transport developed in
[CSPV16, CPSV15, GV16]. Note that this extension of optimal transport is the
model that I proposed as a starting project for the PhD of Lenaïc Chizat. (2) The
link of this unbalanced optimal transport model with the Camassa-Holm equa-
tion explained in [GV16], which is similar to the one between standard optimal
transport and the incompressible Euler equation. In particular, this gives a new
geometric interpretation of the Camassa-Holm and new results on the properties
of geodesics.

3.1 Introduction

For practical applications in imaging or machine learning, a major bottleneck of stan-
dard optimal transport is that it is restricted to measures that have the same total
mass. A usual approach to get around this problem consists in dividing all the den-
sities by their total mass. This renormalization is global and it would be desirable
to take change of mass into account, locally in space and to quantify the amount of
transportation, growth and decay of mass that a shape can occur. Such models have
been proposed in the literature and we now review some of them.

3.1.1 Previous works

Extending standard optimal transport to more general measures can be addressed
in, at least, two different ways, characterized by their formulation: "dynamic" (with
a virtual time) or "static" (without time) as described in the introduction Chapter 1.

Static formulations of unbalanced optimal transport. The simplest way to de-
fine a metric that extends the Wasserstein metric to the space of nonnegative Radon
measure is probably the bounded Lipschitz distance, which is an extension of the
L1 Wasserstein metric by its formulation as a dual norm on the space of Lipschitz
functions. This class of distances was proposed in the early work of Kantorovich
and Rubinstein in [KR58], later developed by [Han99]. These directions have been
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followed in practical applications by [Gui02] and by [GPC15] for applications in neu-
roimaging.
Slightly different, partial optimal transport, first introduced in computer vision works
[RGT97, PW08] and theoretically studied in [CM10], consists in transferring a given
fixed amount of mass between two measures ρ0 and ρ1 as cheaply as possible. In
[CM10] and [Fig10], regularity results on the boundary between the active and inac-
tive sets are proved.

Dynamic formulations of unbalanced optimal transport. Since the introduc-
tion of the Benamou-Brenier formulation [BB00], several dynamical formulations
[Ben03, MRSS15, LM13, PR14, PR13] have been proposed. In [Ben03], the marginal
constraint in the original BB formulation is relaxed using the L2 norm. In the rest
these works, a source term is introduced in the continuity equation. They differ in
the way this source is penalized or chosen. As noted in [CSPV16], optimal partial
transport is tightly related to the generalized transport proposed in [PR14, PR13]
which allows a dynamic formulation of the optimal partial transport problem. In
[MRSS15], the penalization follows the work of [TY05b] where an L2 penalization is
used, and consequently, cannot be considered as a proper generalization of optimal
transport.

3.1.2 Simultaneous works

Perhaps a bit surprisingly, no equivalent of the L2 Wasserstein distance was pro-
posed until 2015, when many simultaneous works introduced the same model, some-
times for different purposes. This works include ours [CSPV16, CPSV15] motivated
by imaging applications, the work of Liero, Mielke and Savaré [LMS15, LMS16] mo-
tivated by gradient flows as well as [KMV16]. Rezakhanlou, in [Rez15], introduced
the model to generalize optimal transport of densities to contact structures. All
these developments were based on the dynamical formulation of optimal transport
and only one developed directly the static formulation [FZM+15], motivated by ma-
chine learning problems. The authors relaxed the marginal constraints of standard
optimal transport using the Kullback-Leibler Let us give an attempt to compare the
contributions at a rather high-level point of views: The first1 article to appear on
the web was [KMV16]. The authors proposed the dynamic model and showed that
this new metric metrizes weak convergence on the space of positive Radon mea-
sures and looked at some gradient flow applications. The articles [LMS15, LMS16]
proposed the dynamical model and show the equivalence with the static formu-
lation and study it in very general spaces, and in particular the dual formulation
is studied in details. Among many other results such as the metrizability of weak
convergence or the generalization of the static formulation, they show a perhaps
surprising link between optimal transport on the space of position and mass, called
the cone, and the new metric.2 Another important object introduced in [LMS15]
is the so-called Gaussian-Hellinger distance which can be seen as a generalization
of the Wasserstein-Fisher-Rao metric. Interestingly, the induced length space by
the Gaussian-Hellinger distance is the Wasserstein-Fisher-Rao metric. In compari-
son to these works, the contributions of our articles [CPSV15, CPSV15] which are
not contained elsewhere are (1) a geometrical point of view by generalizing Otto’s

1According to the historical section at the end of [LMS15], it appears that Liero, Mielke and Savaré
are certainly the first to have presented this new model.

2It is precisely this link which guided our new formulation of the Camassa-Holm equation as an
incompressible Euler equation.
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Riemannian submersion, (2) a general dynamical framework in which the other Lp

equivalent distances can be formulated and in particular the link to partial optimal
transport, (3) a numerical algorithm for the dynamic formulation which implements
a Douglas-Rachford’s method.

3.2 The Wasserstein-Fisher-Rao metric

This section is based on joint works with L. Chizat (PhD student co-advised with G. Peyré),
B. Schmitzer (Post-doc) and G. Peyré in [CSPV16, CPSV15] and with T. Gallouët in [GV16].

Since our goal was to build a metric that has a Riemannian-like behaviour, our
starting point is the dynamic formulation of Benamou and Brenier, who highlighted
the use of the metric tensor associated with optimal transport. We did not want to
design any metric on nonnegative densities but a metric that shares as many proper-
ties as possible with standard optimal transport. Our proposal consisted in using the
infimal convolution of the metric tensor of optimal transport given by the Benamou-
Brenier formula and the so-called Fisher-Rao metric tensor, defined below.

3.2.1 Definition and first properties

The continuity equation enforces the mass conservation property in the Benamou-
Brenier formulation (1.2.12). This constraint can be relaxed by introducing a source
term µ ∈ C∞(M,R),

ρ̇ = −div(ρ ξ) + µ . (3.2.1)

For a given variation of the density ρ̇, there exist a priori many couples (v, µ) that
reproduce this variation. Following [TY05b], it can be determined via the minimiza-
tion of the norm of (v, µ), for a given choice of norm. The penalization of µ was
chosen in [MRSS15] as the L2 norm but a natural choice is rather the Fisher-Rao
metric

FR2(µ) =

∫
M

µ(t, x)2

ρ(t, x)
dvol(x) ,

because it is (one) homogeneous w.r.t. the couple (ρ, µ). It is actually similar to
the Benamou-Brenier tensor. Indeed, let us rewrite Equation (3.2.2), in the (non-
equivalent) formulation

ρ̇ = −div(ρ ξ) + αρ . (3.2.2)

Then, the functional FR is the L2 norm of the growth rate w.r.t. the density ρ since it
can be written as

∫
M α(t, x)2ρ(t, x) dvol(x) whereα is the growth rateα(t, x)

def.
= µ(t,x)

ρ(t,x) .
Note in particular that this action is 1-homogeneous with respect to the couple (µ, ρ).
This point is important for convex analysis properties and especially, in order to
define the action functional on singular measures via the same formula.

Thus, the Wasserstein-Fisher-Rao functional also known as Hellinger-Kantorovich
[LMS15] is simply given by the infimal convolution between the Wasserstein and the
Fisher-Rao metric tensor, that is

J (ξ, α) =

∫ 1

0

∫
M

(‖ξ(x)‖2 + α(x)2)ρ(x) dvol(x) dt , (3.2.3)
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under the generalized continuity equation constraint and the time boundary con-
straints

ρ̇ = −div(ρ ξ) + αρ

ρ(0, x) = ρ0(x) and ρ(1, x) = ρ1(x) .

Definition 14 (WF metric). Let (M, g) be a smooth Riemannian manifold compact
and without boundary, a, b ∈ R∗+ be two positive real numbers and ρ0, ρ1 ∈M+(M)
be two nonnegative Radon measures. The Wasserstein-Fisher-Rao metric is defined
by

WF2(ρ0, ρ1) = inf
ρ,m,µ

J (ρ,m, µ) , (3.2.4)

where

J (ρ,m, µ) = a2

∫ 1

0

∫
M

g−1(x)(m̃(t, x), m̃(t, x))

ρ̃(t, x)
dν(t, x) + b2

∫ 1

0

∫
M

µ̃(t, x)2

ρ̃(t, x)
dν(t, x)

(3.2.5)
over the set (ρ,m, µ) satisfying ρ ∈M([0, 1]×M), m ∈ (Γ0

M ([0, 1]×M,TM))∗ which
denotes the dual of time dependent continuous vector fields on M (time dependent
sections of the tangent bundle), µ ∈M([0, 1]×M) subject to the constraint∫ 1

0

∫
M
∂tf dρ+

∫ 1

0

∫
M

m(∇xf)− fµdν =

∫
M
f(1, ·) dρ1 −

∫
M
f(0, ·) dρ0 (3.2.6)

satisfied for every test function f ∈ C1([0, 1]×M,R). Moreover, ν is chosen such that
ρ,m, µ are absolutely continuous with respect to ν and ρ̃, m̃, µ̃ denote their Radon-
Nikodym derivative with respect to ν.

Remark 15. Note that, in the previous definition, the divergence operator div(·) is defined
by duality on the space of C1 functions. In addition, since the functions in the integrand
of formula (3.2.4) are one homogeneous with respect to the triple of arguments (ρ̃, m̃, µ̃),
the functional does not depend on the choice of ν which dominates the measures. Last, the
Radon-Nikodym theorem applied to the measure m gives m = m̃ν where m̃ is a measurable
section of T ∗M .

The following property can be proven:

Proposition 16. The WF2 functional is convex and positively one homogeneous on the
space of Radon measures. Moreover, WF defines a distance on the space of nonnegative
Radon measures which is continuous w.r.t. to the weak-* topology.

This dynamical formulation enjoys most of the analytical properties of the ini-
tial Benamou-Brenier formulation (1.2.12) and especially convexity. An important
consequence is the existence of optimal paths in the space of time-dependent mea-
sures [CSPV16] by application of the Fenchel-Rockafellar duality theorem as stated
in the next proposition. We omit the proof here since it is similar to the one given
in [CPSV15] in the Euclidean case and it is also proven in more general spaces in
[LMS15].

Proposition 17 (Hamilton-Jacobi). There exists a minimum to the minimization problem
(3.2.4) and it holds

WF2(ρ0, ρ1) = sup
q∈C

∫
M
q(1, ·) dρ1 −

∫
M
q(0, ·) dρ0 (3.2.7)
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where C is the set of functions q ∈ C1([0, 1]×M,R) such that

∂tq(t, x) +
1

2a2
‖∇q(t, x)‖2 +

1

2b2
q(t, x)2 ≤ 0 . (3.2.8)

At this point, it is interesting to note that from a numerical point of view, this
formulation can be used to implement Douglas-Rachford algorithms, as done in
[CSPV16]. However, recent numerical advances in optimal transport have intro-
duced the use of relative entropy on the coupling plan in the static formulation
as a regularization of the linear programming problem. Therefore, motivated by
computational purposes, we asked for the existence of an equivalent static for-
mulation for this new unbalanced optimal transport model. As a key step for its
justification, we generalized the Riemannian submersion highlighted by Otto, as
explained in the introduction.

3.2.2 The geometric interpretation.

Not only analytical properties of standard optimal transport are conserved but also
some interesting geometrical properties such as the Riemannian submersion high-
lighted by Otto, as explained in the introduction. More precisely, the group of dif-
feomorphisms can be replaced by a semi-direct product of group between Diff(M)
and the space Λ(M) = C∞(M,R∗+) which is a group under pointwise multiplication.
Actually, the continuity equation with a source term can be interpreted as the infinitesimal
action of this semi-direct product of group. We define the semi-direct product of group
between Diff(M) and Λ(M) in order to turn the map π defined by

π : (Diff(M) nΨ Λ(M))×Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ)
def.
= ϕ · λϕ∗ρ = ϕ∗(λρ)

into a left-action of the group Diff(M) nΨ Λ(M) on the space of (generalized) densi-
ties. The group composition law is defined by:

(ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2) (3.2.9)

It is obvious that the metric written in Formula (3.2.3) is of the form defined in Propo-
sition 3. Therefore, it explains why Otto’s Riemannian submersion can be extended.
What remains to be computed is an explicit formula for the metric on the group.
This formula is obtained passing from Eulerian to Lagrangian coordinates by

G(ϕ, λ)((Xϕ, Xλ),(Xϕ, Xλ))=

∫
M
g(v, v)ρdx+

∫
M
α2ρdx

=

∫
M
g(Xϕ ◦ ϕ−1, Xϕ ◦ ϕ−1)ϕ∗(λρ0)dx+

∫
M
(Xλλ

−1)2 ◦ ϕ−1ϕ∗(λρ0)dx

=

∫
M
g(Xϕ, Xϕ)λρ0 dx+

∫
M

1

λ
X2
λ ρ0 dx . (3.2.10)

Therefore, we see appearing a Riemannian metric on the space M × R∗+ which is
mg + dm2

m . This metric, up to the change of variable r2 = m is a cone metric, as
usually presented in Riemannian geometry. Let us motivate the introduction of the
cone metric from a different perspective by first discussing informally what happens
for a particle of mass m(t) at a spatial position x(t) in a Riemannian manifold (M, g)
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under the generalized continuity constraint (3.2.2); If the control variables v(t, x) and
α(t, x) are Lipschitz, then the solution of the continuity equation with initial data
m(0)δx(0) has the form m(t)δx(t) where m(t) ∈ R∗+ is the mass of the Dirac measure
and x(t) ∈M its location; The system reads{

ẋ(t) = v(t, x(t))

ṁ(t) = α(t, x(t))m(t) ,
(3.2.11)

which is directly obtained by duality since the flow map associated with (v, α) is well
defined. The action now reads

∫ 1
0 a

2|v(x(t))|2m(t) + b2 ṁ(t)2

m(t) dt. Thus, considering
the particle as a point in M × R∗+, the Riemannian metric seen by the particle is
a2mg+b2 dm2

m . As said in the previous section, this space is isometric to the standard
Riemannian cone defined below.

Definition 18 (Cone). Let (M, g) be a Riemannian manifold. The cone over M de-
noted by C(M) is the quotient space (M × R+) / (M × {0}). The cone pointM×{0}
is denoted by S. The cone will be endowed with the metric gC(M)

def.
= r2g + dr2 de-

fined on M × R∗+ and r is the variable in R∗+.

The explicit formula for the distance on the Riemannian cone can be found in
[BBI01] and the isometry is given by the square root change of variable on the mass,
as stated in the following proposition.

Proposition 19. Let a, b be two positive real numbers and (M, g) be a Riemannian manifold.
The distance on (M × R∗+, a2mg + b2

m dm2) is given by

d((x1,m1), (x2,m2))2 = 4b2
(
m2 +m1 − 2

√
m1m2 cos

( a
2b

min(dM (x1, x2), π)
))

.

(3.2.12)
The space (M ×R∗+,mg+ 1

4m dm2) is isometric to (C(M), gC(M)) by the change of variable
r =

√
m. If c is a geodesic for the metric a2

4b2
g, an isometry S : C \ R− → M × R∗+ is

defined by S(
√
meiθ) = (c(θ), 2bm).

In physical terms, it implies that mass can "appear" and "disappear" at finite cost.
In other words, the Riemannian cone is not complete but adding the cone point,
which represents M × {0}, to M × R∗+ turns it into a complete metric space when
M is complete. Importantly, the distance associated with the cone metric (3.2.12) is
1-homogeneous in (m1,m2).

To be coherent with this literature, we decided to change the group action in
order to obtain this cone metric. We thus introduce the group Diff(M) nΨ Λ1/2(M)
where Λ1/2(M) is also the space of positive functions onM but the action on Dens(M)
now differs and is given by

π :
(
Diff(M) nΨ Λ1/2(M)

)
×Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ)
def.
= ϕ∗(λ

2ρ) . (3.2.13)

Note that the infinitesimal action is slightly changed to

(v, α) · ρ = −div(vρ) + 2αρ . (3.2.14)

Indeed, one has

(ϕ(t), λ(t)) · ρ = Jac(ϕ(t)−1)(λ2(t)ρ) ◦ ϕ−1(t) .



3.2. The Wasserstein-Fisher-Rao metric 35

First recall that ∂tϕ(t) = v ◦ϕ(t) and ∂tλ = λ(t)α ◦ ϕ(t). Once evaluated at time t = 0
where ϕ(0) = Id and λ(0) = 1, the differentiation with respect to ϕ gives −div(vρ)
and the second term 2αρ is given by the differentiation with respect to λ.

The semidirect product of groups is endowed with the L2 metric on the space
of maps between M endowed with the reference measure ρ0 and the space M × R+

endowed with the metric defined above. Let us recall the definition of this L2 metric.

Definition 20 (L2 metric). Let M be a manifold endowed with a measure µ and
(N, g) be a Riemannian manifold. Consider a measurable map ϕ : M → N and
two measurable maps, X,Y : M 7→ TN such that pN (X) = pN (Y ) = ϕ where
pN : TN → N is the natural projection. Then, the L2 Riemannian metric w.r.t. to the
volume form µ and the metric g at point ϕ is defined by

〈X,Y 〉ϕ =

∫
M
g(ϕ(x))(X(ϕ(x)), Y (ϕ(x))) dµ(x) . (3.2.15)

This is probably the simplest type of (weak) Riemannian metrics on spaces of
mappings and it has been studied in details in [EM70] in the case L2(M,M) and
also in [FG89] where, in particular, the curvature is computed for L2(M,N) for N
an other Riemannian manifold. Note in particular that this metric is not the right-
invariant metric L2 on the semidirect product of groups as in [HMR98] which would
lead to an EPDiff equation on a principal fibre bundle as developed in [GTV13].

3.2.3 The Monge-Kantorovich formulation

A Monge-type formulation By the geometric point of view developed above, it is
possible to derive a Monge formulation directly and also to derive a pre-formulation
of the Monge-Ampère equation. We first derive formally the equations for which a
precise meaning will be given in the next sections. The first important consequence
of the L2 metric on the group and the Riemannian submersion is that one can define
a Monge formulation of the Wasserstein-Fisher-Rao metric as follows:

WF(ρ0, ρ1) = inf
(ϕ,λ)

{
‖(ϕ, λ)− (Id, 1)‖L2(ρ0) : ϕ∗(λ

2ρ0) = ρ1

}
. (3.2.16)

As in the case of standard optimal transport, it is therefore compulsory to find the
relaxation of this Monge formulation, which we also call a Kantorovich formulation.

The Kantorovich-type formulation The generalization to any positive Radon mea-
sures of the Kantorovich relaxation requires the definition of a convex functional
which is one-homogeneous on the space of Radon measures described below. The
next theorem is proven in [CPSV15] and in another form in [LMS15], both only in
the Euclidean case. We extend it to a Riemannian setting in [GV16].

Theorem 21. For two given positive Radon measures ρ1, ρ2, we define, forM+(M2) the
space of positive Radon measures on M2,

Γ(ρ1, ρ2)
def.
=
{

(γ1, γ2) ∈
(
M+(M2)

)2
: p1
∗γ1 = ρ1, p

2
∗γ2 = ρ2

}
, (3.2.17)

where p1 and p2 denote the projection on the first and second factors of the product M2. The
variational problem associated with the Wasserstein-Fisher-Rao distance is

WF2(ρ1, ρ2) = min
(γ1,γ2)∈Γ(ρ1,ρ2)

∫
M2

d2
C(M)

(
(x,

dγ1

dγ
), (y,

dγ2

dγ
)

)
dγ(x, y) , (3.2.18)



36 Chapter 3. Unbalanced optimal transport and the Camassa-Holm equation

where d2
C(M) is the square of the cone distance given in definition 18 and γ is any measure

that dominates ρ1 and ρ2.

Remark 22. The fact that S(γ1, γ2)
def.
=
∫
M2 d

2
C(M)

(
(x, dγ1

dγ ), (y, dγ2
dγ )
)

dγ(x, y) is well de-
fined follows from the application of [Roc71, Theorem 5]. It does not depend on the choice of
the measure γ since the function d2 is one-homogeneous w.r.t. the mass variables. As a conse-
quence of Rockafellar’s theorem [Roc71, Theorem 5], S is convex and lower-semicontinuous
on the space of Radon measures as the Legendre-Fenchel transform of a convex functional on
the space of continuous functions.

We also state without proof the dual formulation which is given by the applica-
tion of Fenchel-Rockafellar duality theorem, see [CSPV16].

Proposition 23. It holds

WF2(ρ0, ρ1) = sup
(φ,ψ)∈C(M)2

∫
M
φ(x) dρ0(x) +

∫
M
ψ(y) dρ1(y) (3.2.19)

subject to ∀(x, y) ∈M2,{
φ(x) ≤ 1 , ψ(y) ≤ 1 ,

(1− φ(x))(1− ψ(y)) ≥ cos2 (d(x, y) ∧ (π/2)) .
(3.2.20)

A reformulation of this linear optimization problem is

WF2(ρ0, ρ1) = sup
(z0,z1)∈C(M)2

∫
M

1− e−z0(x) dρ0(x) +

∫
M

1− e−z1(y) dρ1(y) (3.2.21)

subject to ∀(x, y) ∈M2,

z0(x) + z1(y) ≤ − log
(
cos2 (min(d(x, y), π/2))

)
. (3.2.22)

Interestingly, the last formulation can be further reduced since the exponential
r 7→ er is the Fenchel-Legendre conjugate associated with the Kullback-Leibler di-
vergence defined below. Therefore, using duality again, it is proven in [LMS15] that
the static problem in Proposition 23 can be rewritten as

WF2(ρ0, ρ1) = inf
γ∈M+(M2)

KL(Proj1∗ γ, ρ0) + KL(Proj2∗ γ, ρ1)

−
∫
M2

log
(
cos2 (min(d(x, y), π/2))

)
dγ(x, y) (3.2.23)

with

KL(µ, ν) =

∫
dµ

dν
log

(
dµ

dν

)
dν + |ν| − |µ| ,

the Kullback-Leibler divergence. Formulation (3.3.1) of unbalanced optimal trans-
port and its extensions have been intensively developed in [LMS15], where gener-
alizations of this metric are studied in spaces such as Hausdorff topological spaces
endowed with a (pseudo) distance satisfying mild conditions.

We only focused in this chapter on the equivalent to the L2 Wasserstein distance,
however, the dynamical approach readily extends to any Lp Wasserstein - Lq Fisher-
Rao type of Lagrangian, which gives the framework for unbalanced optimal trans-
port in general, see [CPSV15]. For instance, it encompasses the partial optimal trans-
port model which is an L2 Wasserstein - L1 Fisher-Rao (which means TV ) type of
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•
t = 0 t = 1t = 0.5

ρ0 ρ1

•
t = 0 t = 1t = 0.5

ρ0 ρ1

FIGURE 3.1: Geodesics between ρ0 and ρ1 having same total mass
(number of black pixels). The first row is pure Fisher-Rao, the second
is standard L2 Wasserstein distance, the third one is partial optimal

transport and the last one is Wasserstein-Fisher-Rao.

metric. Note that the corresponding static formulation requires the computation of
the cost on the cone M × R∗+ which is not always available in closed form.

In Figure 3.1, we compare the different geodesics between two binary densities of
the same total mass (simulated by the use of Douglas-Rachford algorithm on the dy-
namical formulation). Thus, one can apply standard optimal transport and compare
it to the Wasserstein-Fisher-Rao metric and other unbalanced metrics. In particular,
we clearly see that optimal transport has to move masses on rather long distances to
explain the deformation. Therefore, this generalization of optimal transport can be
seen as a regularization with respect to noise in the data.

3.3 Entropic regularization and scaling algorithms

This section is based on joint works with L. Chizat, B. Schmitzer (Post-doc) and G. Peyré in
[CPSV16].

Entropic regularization simply consists in adding the negative entropy of the
coupling plan to the optimal transport functional. Entropic regularization goes back
to Schrödinger [Léo14, Léo12] but it was introduced for numerical purposes in [Cut13].
This approach was then further developed and applied to multimarginal problems
such as Wasserstein barycenters (Karcher means) in [SdGG+15, BCC+15, CD14]. The
main reason for the use of relative entropy as a regularizer is that it leads to a par-
ticularly simple algorithm. This algorithm enables fast computations of an approxi-
mation of the optimal coupling plan using an alternate projection algorithm, known
as Sinkhorn algorithm [Sin64].

Developing efficient numerical algorithm was our motivation to find a corre-
sponding static formulation. The two static formulations (3.2.18) and (3.3.1), es-
pecially the last one, enable the introduction of the entropic regularization on the
coupling plan γ. This direction is developed in [CPSV16] and we briefly describe
it hereafter. Let ε a positive real and two reference measures γ1, γ2 on M which
dominate respectively ρ1, ρ2, consider the previous functional regularized using the
negative entropy of γ̃, the density of γ w.r.t. γ0 = γ1 ⊗ γ2. The negative entropy is
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defined as H(γ) =
∫
M2 γ̃(x, y) log(γ̃(x, y)) dγ0(x, y). We introduce

WF2
ε(ρ1, ρ2) = inf

γ∈M+(M2)
KL(Proj1∗ γ, ρ1) + KL(Proj2∗ γ, ρ2)

−
∫
M2

log(cos2(d(x, y) ∧ (π/2))) dγ(x, y) + εH(γ) . (3.3.1)

The scaling algorithm which is a generalization of the Sinkhorn algorithm for stan-
dard optimal transport is an alternate minimization on the dual problem which
reads, with c(x, y) = − log(cos2(d(x, y) ∧ (π/2))),

WF2
ε(ρ0, ρ1) = sup

p1,p2
−
∫
M

(e−p1(x) − 1) dρ1(x) −
∫
M

(e−p2(y) − 1) dρ2(y)

− ε
∫
M2

e(p1(x)+p2(y)−c(x,y))/ε) dγ0(x, y) , (3.3.2)

where the supremum is taken on functions in L∞(M,γ1) × L∞(M,γ2) as explained
in [CPSV16]. The primal solution can be written as

γ̃(x, y) = a(x)e−c(x,y)/ε)b(y) , (3.3.3)

where a(x) = ep1(x)/ε and b(y) = ep2(y)/ε. The alternate minimization has a closed
formulation and the generalized Sinkhorn algorithm consists in iterating, after the
initialization of a(x), b(y):

a(x)← (ρ1(x)/Σ1(x))1/(ε+1)

b(y)← (ρ2(y)/Σ2(y))1/(ε+1) ,

where Σ1(x) =
∫
M b(y)e−c(x,y)/ε dγ2(y) and Σ2(y) =

∫
M a(x)e−c(x,y)/ε dγ1(x). Sim-

ilarly to the Sinkhorn algorithm for standard optimal transport [Cut13], this algo-
rithm has linear convergence rate w.r.t. a Hilbert type metric, see [CPSV16, Section
3.5]. Note that this alternate algorithm can be generalized to other divergences than
KL, with preferably a closed formula for the alternate minimization for computa-
tional efficiency, but the linear convergence proof need not apply.
Finally, let us remark that, in this algorithm, the cost c can differ from the possibly
surprising − log(cos2(min(d(x, y), π/2))). The distance on the Euclidean space has
been proposed in [FZM+15] and [LMS15] showed that its induced length space is the
Wasserstein-Fisher-Rao metric. Last, introducing positive weights on the Kullback-
Leibler divergences in (3.3.1) is also possible but, depending on this parameters, the
resulting object might not be a distance.

In [CPSV16], applications to the transport of histograms is shown on color trans-
fer. Figure 3.2 shows the initial and final images on which the color histograms are
computed and the results of the color transfer. In comparison with standard optimal
transport, the Kullback-Leibler penalization gives a visually more satisfying result,
see Figure 3.3. We refer to [CPSV16] for more details and where other applications
are shown on gradient flows (Hele-Shaw type model) and on barycenters (Karcher
means) for this new distance.
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FIGURE 3.2: Transporting the color histograms: initial and final im-
ages.

Optimal transport Range constraint

Kullback-Leibler Total variation

FIGURE 3.3: Different metrics for the color transfer application. The
Kullback-Leibler divergence shows a visually satisfying result in

comparison with standard optimal transport.
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3.4 Perspectives

This section was devoted to the extension of the L2 Wasserstein metric to the space
of nonnegative Radon measures. We discuss hereafter other extensions of the L2

Wasserstein metric which seem natural or of interest.
First, such an extension to signed Radon measure seems difficult [Mai12], al-

though some ad-hoc constructions can be proposed.
In a similar direction, an interesting perspective of research consists in extend-

ing these optimal transport metrics to cone-valued measures, and especially L2 type
of metrics. One cone of particular interest for applications is the cone of positive
semidefinite matrices, for which several works have appeared in the past few years
[NGT15, NG14, CGT16]. In particular, since these metrics should metrize the weak
convergence of measures, significantly different behavior than standard optimal
transport can be expected. Let us explain what we expect when the cone is the
space of PSD matrices S+

2 (R) and the underlying space is R. Let ε a positive real
number, and using complex plane notations, define µ1 = i ⊗ iδ0 + 1 ⊗ 1δε and
µ2 = eiπ/4 ⊗ eiπ/4δ0 + ei3π/4 ⊗ ei3π/4δε. The total mass of µ1, equal to Id is also
equal to that of µ2, thus if ε is small, the optimal transport distance should be close
to zero, since the optimal transport distance should metrize the weak convergence of
measures. Indeed, the path shown in Figure 3.4 is of order ε and it exhibits a "shock"

FIGURE 3.4: A possible trajectory from µ1 at time 0 to µ2 at time 1
whose cost is of order ε.

between the two Dirac masses at midpoint in time. Actually, at time 1/2, where the
two tensors add up to identity, they can be decomposed an infinite number of ways.
If there were no transport and pure transformation of the matrices, the cost would
be of order sin(π/4). Unfortunately, this might rule out the existence of a "static"
model and possibly the efficient algorithm developed in [PCVS16]. To conclude, let
us insist on the striking difference of this extension with standard optimal transport
which excludes "shocks" during the transport but at the initial and final timepoints.
In this type of model, shocks are needed in order to fulfill the metrizability of weak
convergence. These models are also part of L. Chizat’s PhD thesis.

The last direction consists in "smoothing" optimal transport. Since optimal trans-
port is a distance between probability measures which can be Dirac measures, the
optimal maps cannot be expected to be smooth mappings. However, the deep the-
ory of the Ma-Trudinger-Wang tensor gives conditions under which smoothness of
the optimal maps for the L2 Wasserstein metric is guaranteed [DPF14], when the
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source and target measures are have positive smooth density w.r.t. the volume mea-
sure. These conditions do not hold when M has negative sectional curvature, in this
case the maps can be discontinuous. Therefore, it is natural to ask for an "optimal
transport like" metric on the space of densities which has, built-in, the smoothness
property. Attempts in this direction include J. Louet’s PhD thesis [Lou14], and in
imaging applications in [FPR+13]. These two attempts aim at smoothing the static
formulation of optimal transport. In general, these static formulations do not pro-
vide a metric on the space of densities. To propose a metric on the space of densities
which includes smoothness constraints, we currently work on an extension of the
Benamou-Brenier formulation.

3.5 From the Wasserstein-Fisher-Rao metric to the Camassa-
Holm equation

This section is based on joint work with T. (Thomas) Gallouët [GV16].
Since Otto’s Riemannian submersion has been extended to the case of the Wasserstein-

Fisher-Rao metric, it is natural to look for a fluid dynamic equation which is the
counterpart of the incompressible Euler equation for the standard L2 Wasserstein
metric. In other words, what is the corresponding geometry on the isotropy sub-
group and if there is an associated polar factorization theorem. It turns out that
what replaces incompressible Euler equation is the geodesic equation for the right-
invariant Hdiv metric on the group of diffeomorphisms. In the one dimensional
case, this geodesic equation is known as the Camassa-Holm equation introduced in
[CH93]. Since its introduction, the Camassa-Holm equation has attracted a lot of
attention since it is a bi-Hamiltonian system as well as an integrable system, it ex-
hibits peakon solutions and it is a model for waves in shallow water [CL08, Con01,
Len05, CE98, BC07, Dan01, GHR11]. In particular, this equation is known for its well
understood blow-up in finite time and it is a model for wave breaking [McK04].

3.5.1 The link to the Camassa-Holm equation

The Riemannian submersion π0 : Diff(M) nΨ Λ1/2(M) 7→ Dens(M) defined in For-
mula (3.2.2) enables to study the equivalent fluid dynamic equation. The fiber of the
Riemannian submersion at vol is π−1

0 ({vol}) and it will be denoted temporarily by
H0. More explicitely, we have

π−1
0 ({vol}) = {(ϕ, λ) ∈ Diff(M) nΨ Λ1/2(M) : ϕ∗(λ

2 vol) = vol} . (3.5.1)

The constraint ϕ∗(λ2 vol) = vol can be made explicit as follows

H0 = {(ϕ,
√

Jac(ϕ)) ∈ Diff(M) nΨ Λ1/2(M) : ϕ ∈ Diff(M)} . (3.5.2)

Note that this isotropy subgroup can be identified with the group of diffeomorphims
of M by the map ϕ 7→ (ϕ,

√
Jac(ϕ)). Now, the vertical space at point (ϕ,

√
Jac(ϕ)) is

Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
= {(v, α)◦(ϕ,

√
Jac(ϕ)) : div v = 2α } , (3.5.3)

and equivalently

Ker
(
dπ0(ϕ,

√
Jac(ϕ))

)
=

{(
v,

1

2
div v

)
◦(ϕ,

√
Jac(ϕ)) : v ∈ Vect(M)

}
. (3.5.4)
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The induced (weak) Riemannian metric on H0 reads

Gϕ(Xϕ, Xϕ) =

∫
M
|v|2 dvol +

1

4

∫
M
|div v|2 dvol , (3.5.5)

where v = Xϕ ◦ ϕ−1. In conclusion, we have H0 ' Diff(M) and the induced metric
on Diff(M) is the right-invariantHdiv metric, isometrically embedded in Diff(M)nΨ

Λ1/2(M) endowed with its L2(M, C(M)) metric.
As a straightforward application, we retrieve a theorem by Michor and Mumford

[MM05].

Corollary 24. The distance on Diff(M) with the right-invariant metric Hdiv is non degen-
erate.

Proof. Let ϕ0, ϕ1 ∈ Diff(M) be two diffeomorphisms and c be a path joining them.
The length of the path c for the right-invariant metric Hdiv is equal to the length of
the lifted path c̃ in Diff(M) nΨ Λ1/2(M). Since L2(M, C(M)) is a Hilbert manifold,
the length of the path c̃ is bounded below by the length of the geodesic joining the
natural lifts of ϕ0 and ϕ1 in L2(M, C(M)). Therefore, it leads to

dHdiv(ϕ0, ϕ1) ≥ dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
. (3.5.6)

If dHdiv(ϕ0, ϕ1) = 0 then dL2(M,C(M))

(
(ϕ0,

√
Jac(ϕ0)), (ϕ1,

√
Jac(ϕ1))

)
= 0 which

implies ϕ0 = ϕ1.

On the well-posedness of the initial value problem. Global well-posedness does
not hold in one dimension since there exists smooth initial conditions for the Camassa-
Holm equation such that the solutions blow up in finite time.

In higher dimensions, the initial value problem has been studied by Michor and
Mumford [MM13, Theorem 3]. This is not a direct result of [EM70] since the dif-
ferential operator associated to the metric is not elliptic. They prove that the initial
value problem on the space of vector fields is well posed for initial data in a Sobolev
space of high enough order. Although the proof could probably be adapted to the
case of a Riemannian manifold, in that case, the result of local well posedness is not
known.

Open question 25. Is it possible to adapt the proof of local well-posedness in [EM70] to
treat the case of the non-elliptic operator associated with the right-invariant Hdiv metric ?

3.5.2 The Camassa-Holm equation as an incompressible Euler equation

This is a possibly surprising result since there is a priori no link between the semi-
direct product of group and the group of volume preserving diffeomorphisms. The
hint comes from the formulation of the Wasserstein-Fisher-Rao distance, as a the
Wasserstein L2 distance on the cone C(M), which was put forward in [LMS15, Sec-
tion 7.2]. One has

WF(µ0, µ1) = min
(ν0,ν1)∈E−1

m (ν0)×E−1
m (ν1)

W2(ν0, ν1) , (3.5.7)

where Em : P2
C(M) 7→ M+(M) defined by E(ν) =

∫
R+
r2 dν(r), which means in-

tegration w.r.t. the (square root of) mass variable for probability measures ν for
which

∫
C(M) r

2 dν < +∞. In other words, P2
C(M) is the set of probability measures
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which have a finite second moment w.r.t. to the cone distance. Since this formulation
draws the link between standard optimal transport and the Wasserstein-Fisher-Rao
distance, it is then natural to look for the relation between Camassa-Holm and the
incompressible Euler equation.

The first step to make this link clear consists in interpreting the semidirect prod-
uct of group as a subset of the group of diffeomorphisms of the cone. The cone has
a particular structure and can be viewed as the trivial principle bundle, since R∗+ is
a multiplicative group. Actually the cone can be viewed as the fiber bundle of half-
densities once a reference measure is chosen, which trivializes it. Diffeomorphisms
that respect this group structure are called automorphisms, thus the semidirect prod-
uct of groups is the automorphism group of the cone, denoted by Aut(C(M)). In
other words, it is the group of diffeomorphisms of C(M) that are linear in the radial
component r. Let us denote Autvol(C(M)) the isotropy subgroup of vol, the Rieman-
nian volume form on M , for the group action defined in (3.2.2).

Writing the geodesic equation of theHdiv right-invariant metric as a Riemannian
submanifold of Autvol(C(M)) ⊂ Aut(C(M)) ⊂ Diff(C(M)) leads to

D

Dt
(ϕ̇, λ̇r) = −∇Ψp ◦ (ϕ, λr) , (3.5.8)

where Ψp(x, r)
def.
= 1

2r
2p(x). At this point, this equation looks like the incompress-

ible Euler equation, however, the Riemannian volume measure is not left invariant
by pushforward of an element in Autvol(C(M)). However, a straightforward compu-
tation shows that the density r−3 dr dvol is left invariant by pushforward. Therefore,
we have the reformulation of the geodesic equation of the Hdiv right-invariant met-
ric as an incompressible Euler equation but for a density on the cone which has a radial
form and not integrable at the cone point.

Theorem 26. A solution (ϕ, λ) of (3.5.8) is a solution of the incompressible Euler equation
for the density ν̃ = r−3−d dvolC(M) where dvolC(M) is the volume form on the cone C(M)
and d is the dimension of M .

This result is also possibly surprising since it means that Autvol(C(M)) is left
invariant by the (modified) Euler equation. In other words, this theorem under-
lines that Autvol(C(M)) = Aut(C(M)) ∩ SDiff ν̃(C(M)). Importantly, it can be shown
that Aut(C(M)) is a totally geodesic subspace of Diff(C(M)), which explains the
fact that the geodesic equation on Autvol(C(M)) is actually a geodesic equation on
SDiff ν̃(C(M)). We illustrate this situation in Figure 3.5.

Theorem 26, applied to the 1D case, leads to

Corollary 27. Solutions to the Camassa-Holm equation

∂tu−
1

4
∂txxu+ 3∂xuu−

1

2
∂xxu ∂xu−

1

4
∂xxxuu = 0 (3.5.9)

are mapped to solutions of the incompressible Euler equation on R2 \ {0} for the density
ρ = 1

r4
Leb, that is {

v̇ +∇vv = −∇P ,
∇ · (ρv) = 0 ,

(3.5.10)

by the map u 7→
(
u(θ), r2∂xu(θ)

)
.
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Autvol(C(M))

(Dens(M),WFR) vol

Aut(C(M))

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ
2 vol)

Aut(C(M))

Diff(C(M))

L2(C(M))

(Dens(C(M)),W2) ν̃ = r−3 dvol dr

Diff ν̃(C(M))

Autvol(C(M))

π̃(ψ) = ψ∗(ν̃)

FIGURE 3.5: On the left, the picture represents the Riemannian sub-
mersion between Aut(C(M)) and the space of positive densities onM
and the fiber above the volume form is Autvol(C(M)). On the right,
the picture represents the automorphism group Aut(C(M)) isomet-
rically embedded in Diff(C(M)) and the intersection of Diff ν̃(C(M))

and Aut(C(M)) is equal to Autvol(C(M)).
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A natural application of this result concerns minimizing properties of solutions
of the geodesic equation. It appears possible to adapt the proof of Y. Brenier [Bre03]
in this case. The following result cannot be seen as a direct consequence of his result
since the cone is not a compact manifold, but it is a simple adaptation of it.

Theorem 28. Smooth solutions to the Camassa-Holm equation (3.5.9) are length minimiz-
ing for short times.

This result can be also extended in the Riemannian case in any dimension, for a
compact manifold without boundaries, see [GV16, Section 6].

Open question 29. In this section, we put forward the link between the Camassa-Holm
equation and the incompressible Euler equation. It is possible to define an equivalent to the
generalized flows introduced by Y. Brenier in [Bre89]. However, we conjecture that this con-
vex relaxation is not tight in 1D and tight in higher dimensions, similarly to what happens
for the incompressible Euler equation (not tight in 2D but tight in 3D due to Schnirelman’s
results). Therefore, the relaxation of the Camassa-Holm equation is open.

Open question 30. Recently, the article [ABLZ17] shows the correspondence between the
entropic regularization of incompressible Euler and a certain form of the Navier-Stokes equa-
tion. What is the corresponding regularization of the Camassa-Holm equation ?

3.5.3 The corresponding polar factorization theorem

Following the geometric picture in Proposition 8, we explain the corresponding po-
lar factorization theorem. It turns out that this factorization can be extended to a
larger class containing the automorphism group of the cone Aut(C(M)). In the fol-
lowing, we state a polar factorization theorem for a class of maps from M to C(M).
We start with definitions.

Definition 31. We define the generalized automorphism semigroup of C(M) as the
set of mesurable maps (ϕ, λ) from M to C(M)

Aut(C(M)) =
{

(ϕ, λ) ∈Mes(M,M) nMes(M,R∗+)
}
, (3.5.11)

endowed with the semigroup law

(ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2) .

We also consider the stabilizer of the volume measure in the automorphisms of
C(M). It is a subsemigroup and is defined by

Autvol(C(M)) =
{

(s, λ) ∈ Aut(C(M)) : π ((s, λ), vol) = vol
}
. (3.5.12)

By abuse of notation, any (s, λ) ∈ Autvol(C(M)) will be denoted
(
s,
√

Jac(s)
)

mean-
ing that for every continuous function f ∈ C(M,R)∫

M
f(s(x))

√
Jac(s)

2
dvol(x) =

∫
M
f(x) dvol(x) . (3.5.13)

Using the notation c(x, y) = − log(cos2(min(d(x, y), π/2)) and the usual defini-
tion of c-convex functions, we have:

Theorem 32 (Polar factorization). Let (φ, λ) ∈ Aut(C(M)) be an element of the gen-
eralized automorphism group of the half-densities bundle such that ρ1 = π0 [(φ, λ), vol] is
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an absolute continuous admissible measure. Then, there exists a unique minimizer, char-
acterized by a c-convex function z0, to the Monge formulation (3.2.16) between vol and ρ1

and there exists a unique measure preserving generalized automorphism (s,
√

Jac(s)) ∈
Autvol(C(M)) such that vol a.e.

(φ, λ) = expC(M)

(
−1

2
∇pz0 ,−pz0

)
◦ (s,

√
Jac(s)) (3.5.14)

or equivalently
(φ, λ) =

(
ϕ, e−z0

√
1 + ‖∇z0‖2

)
· (s,

√
Jac(s)) , (3.5.15)

where pz0 = ez0 − 1 and

ϕ(x) = expMx

(
− arctan

(
1

2
‖∇z0(x)‖

)
∇z0(x)

‖∇z0(x)‖

)
. (3.5.16)

Moreover (s,
√

Jac(s)) is the uniqueL2(M, C(M)) projection of (φ, λ) onto Autvol(C(M)).

Note that underlying the Wasserstein-Fisher-Rao distance, there corresponds a
Monge-Ampère equation which we state informally as follows, for a c-convex func-
tion z:

det
[
−∇2z(x) + (∇2

xxc)(x, ϕ(x))
]

= |det [(∇x,yc)(x, ϕ(x))]| e−2z(x)

(
1 +

1

4
‖∇z(x)‖2

)
f(x)

g ◦ ϕ(x)
,

(3.5.17)
where ϕ is given by

ϕ(x) = expMx

(
− arctan

(
1

2
‖∇̃z(x)‖

)
∇̃z(x)

‖∇̃z(x)‖

)
(3.5.18)

and satisfies the second boundary value problem: ϕ maps the support of ρ0 to the
support of ρ1. A current direction of our research is the smoothness properties of the
optimal maps following the Ma-Trudinger-Wang approach.

Open question 33. We conjecture that the positivity of the MTW tensor for the cost c on
M implies the positivity of the MTW tensor of the Riemannian distance on C(M).
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Chapter 4

Applications to diffeomorphic
image matching

This section summarizes the contributions we had on the practical imple-
mentation of the LDDMM framework, and some of its possible extensions. We
proposed the "sum of kernels" [RVW+11] in order to produce more plausible
deformations and give a mathematical interpretation in [BRV12]. In the same di-
rection, we proposed the introduction of spatially varying kernels in the frame-
work of left-invariant metrics instead of right-invariance [SRV13], and a simple
optimization method to learn the metric parameters in [VR14].

We also introduced geodesic regression on the space of images [NHV11]
and a corresponding shooting algorithm [VRRC12] and present an application
of this algorithm as a longitudinal deformation model for the development of
Alzheimer disease [FRR+14].

4.1 Introduction

As presented in the introduction, the elementary method of LDDMM consists in the
minimization of the functional

L(ξ) =

∫ 1

0
‖ξ(t)‖2V dt+ S(q(1)) (4.1.1)

under the constraints

∂tq(t, x) = ξ(t, q(t, x)) (4.1.2)
q(0, x) = q0(x) ∀x ∈ D .

For practical applications of the method, two crucial points are (1) the choice of the
reproducing kernel space (RKHS) of vector fields V or equivalently the choice of the
kernel defining it and (2) the choice of the similarity measure S. In this chapter, we
will mostly discuss the first issue and present a similarity measure based on optimal
transport for curves or surfaces.

4.2 Sum of kernels and semidirect product of groups

This section is based on the work with Laurent Risser and Martins Bruveris in [RVW+11,
BRV12].

In most applications, a single Gaussian kernel was used or a kernel correspond-
ing to the differential operator (Id +σ∆)k for a well chosen k with a single parameter
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σ. The Gaussian width, also denoted by σ, was chosen so that the matching "quality"
was sufficiently good, which means a small σ. What is the effect of this parameter
on the shape of the deformation ? Let us choose for instance a small translation of a
shape as a simple example. If one chooses a small kernel size, the deformation will
be explained by the motion of the boundaries and the center point of the shape will
almost not move at all. On the contrary, this translation will be well captured by a
Gaussian kernel with large σ, however, this kernel will not give a good matching on
real data, where small scale features matter. This practical question is reflected by

Source Image IS Target Image IT

K1 K10 MK5
(a) (b)

FIGURE 4.1: Influence of the smoothing kernel when registering two
images containing differences at several scales simultaneously in the
LDDMM framework. (a) Region of interest of the source and target
images IS and IT containing the registered shapes. (b) Registration
of the images IS and IT using different kernels: (k1 and k10) Gaus-
sian kernels of width σ = 1 and σ = 10 pixels; (MK5) sum of 5 Gaus-
sian kernels linearly sampled between 10 and 1 pixels. Diffeomorphic
transformations of IS at t = 1 (final deformation) are shown on the
top and corresponding homogeneous grids (step = 1 pixel) are on the

bottom.

the following property of the LDDMM method: Where there is no gradient informa-
tion, for instance in a flat region of the image, the kernel spatially interpolates the
rest of the information (i.e. the momentum) to drive the motion of the points. There-
fore, it is natural to introduce a sum of kernels to fill in the missing information
while preserving the quality of the matching. Therefore, more plausible deforma-
tions are obtained since the correlation of the motions of the points is higher. This is
illustrated in Figure 4.1.

In practice, this method works really well and the mathematical insight for this
efficiency is probably the variational interpretation of the sum of kernel. For the sake
of simplicity, we only treat the case of a finite set of RKHS Hilbert spaces Hi with
kernels ki and Riesz isomorphisms Ki between H∗i and Hi for i = 1, . . . , n. Denoting
H = H1 + . . .+Hn, the space of all functions of the form v1 + . . .+ vn with vi ∈ Hi,
the norm is defined by

‖v‖2H = inf

{
n∑
i=1

‖vi‖2Hi
∣∣∣ n∑
i=1

vi = v

}
. (4.2.1)

The minimum is achieved for a unique n-tuple of vector fields and the space H ,
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endowed with the norm defined by (4.3.5), is complete. The result is the following,
there exists a unique element p ∈

⋂n
i=1H

∗
i for which one has vi = Kip and

v =
n∑
i=1

Kip , (4.2.2)

the family (vi)i=1,...,n realizing the (unique) infimum of the variational problem. The
formula (4.3.5) induces a scalar product on H which makes H a RKHS, and its as-
sociated kernel is k :=

∑n
i=1 ki, where ki denotes the kernel of the space Hi. This

property was written in [Aro50]. Note also that this property is the particular case
of an elementary result in convex analysis, at least in finite dimensions: the convex
conjugate of an infimal convolution is equal to the sum of the convex conjugates.

Another phenomenon observed in practice is that a better quality of matching
is obtained with a sum of kernels than with a single kernel of small width. This is
probably explained because of the shape of the kernel, in relation with the similarity
measure is responsible for the local minimum of the functional. We suspect that
a small kernel size increases the number of local minimums, although we have no
quantitative argument in this direction.

K1.5 K20 MK2 a′1
a′2

= 1 MK2? a′1
a′2

= 8 MK4 MK7 FFD

FIGURE 4.2: Different regularizations that show the effect of the sum
of kernels and in particular that it avoids bad local minima. MK
stands for the sum of kernels. In [RVW+11], we propose a rule of
thumb on how to choose the weights semi-automatically and the scale

parameters.

This infimal convolution at the level of the Lie algebras has its counterpart (ac-
tually not uniquely defined from the linear situation) at the level of the groups. Let
us assume that we build the groups GHi as in Formula (1.2.5), we can now use these
groups to act on an image by, for instance,

(ϕ1, . . . , ϕn) · q = ϕ1 · (. . . ϕn−1 · (ϕn · q)) , (4.2.3)

deciding in particular on the order of the scales. Now, there are at least two ques-
tions: (1) Does there exist a group structure on G1× . . .×Gn such that the above map
is a left action ? (2) What would be the Lagrangian to minimize in order to "choose"
one particular deformation ?

The natural answer to the latter consists in minimizing

1

2

n∑
i=1

∫ 1

0
‖vi(t)‖2Hi dt+ d2(ϕ(1).I0, Itarget) , (4.2.4)
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where ϕ(1) = ϕ1(1)◦ . . .◦ϕn(1). It turns out that the answer to the first is positive by
defining the semidirect product of groups G = G1 o · · ·o Gn and this group is equal
to GH , and the minimization problem (4.2.4) is equivalent to the standard LDDMM
formulation with a RKHS defined by (4.3.5). However, the caveat in this formulation
is that the diffeomorphisms ϕi(t) are not the flows of vi(t) unless i = 1, but they are
defined by

∂tϕk(t) =

(
vk(t) + (Id−Adϕk(t))

n∑
i=k+1

vi(t)

)
◦ ϕk(t) . (4.2.5)

We can also sum over all scales to form v(t) =
∑n

k=1 vk(t) and compute the flow ϕ(t)
of v(t). Then a simple calculation shows that

ϕ(t) = ϕ1(t) ◦ . . . ◦ ϕn(t) . (4.2.6)

4.3 Left-invariant metrics

This section is based on the articles with T. Schmah and L. Risser [SRV13, SRV15].
A natural extension of the sum of kernels consists in having a kernel which

may depend on the location. However, the right-invariant point of view is meant
for a homogeneous material whose properties are translation invariant although
this is not required by the theory. In practice the kernel used in diffeomorphic
methods (LDDMM and the other methods cited above) has always been chosen
to be translationally-invariant and isotropic. In LDDMM, spatially varying or non
isotropic (“direction-dependent”) kernels have no obvious interpretation, because
the norm is defined in Eulerian coordinates, so that as t varies during the deforma-
tion, a fixed point in the source image moves through space, and conversely, a fixed
point in space will correspond to different points on the source image. Similarly,
the directions in a direction-dependent kernel are defined with respect to Eulerian
coordinates, not the coordinates of the moving source image. Nonetheless, spatially-
varying kernels are potentially of great interest in medical applications, if they can be
made to represent spatially-variable (or non-isotropic) deformability of tissue. This
is indeed already done in [RVBS13] to model sliding conditions between the lungs
and the ribs.

In this section, we present a slightly different registration framework than LD-
DMM which naturally supports the use of spatially varying kernels. It is based on
a left-invariant metric, i.e. based on a norm in the body (Lagrangian) coordinates
of the source image, which explains its naming LIDM (Left Invariant Diffeomorphic
Metrics). This means that instead of the V norm in (4.1.1) being applied to the spatial
(Eulerian) velocity defined by (4.1.2), it is applied to the convective velocity defined by

∂tφ(t) = dφ(t) · v(t) , (4.3.1)

where dφ(t) is the spatial derivative of φ(t).
It is well-known that left trivialization and right trivialization are "isomorphic" by the

inverse map. The setting we propose consists in using a left action with a left-invariant
metric, which differs from the standard LDDMM setting, which is a left action together with
a right-invariant metric. In particular, this new framework looses the induced Riemannian
metric on the orbit.

Thus, we are left with proving the existence of the flow of (4.3.1) for an element
v ∈ L2([0, 1], V ) for instance, which is done in [SRV15]. Now, we define the set of
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associated transformations.

GLV :=
{
φ(1) ∈ B

∣∣ ∂tφ(t) = dφ(t) · v(t) and v ∈ L2([0, 1], V )
}
,

GV =
{
φ(1) ∈ B

∣∣ ∂tφ(t) = u(t) ◦ φ−1(t) and u ∈ L2([0, 1], V )
}
.

It can be shown that GLV = GV , however, the sets of paths φ(t) in the definitions of
GLV and GV do not coincide in general. Once GLV is equipped with the left-invariant
metric (that is the norm of v ∈ L2([0, 1], V )) denoted by dL, and denoting the right-
invariant metric by dR we get

Proposition 34. 1. The inverse mapping is an isometry:

(GLV , dL)→ (GV , dR)

φ→ φ−1

2. φ is a left-geodesic if and only if φ−1 is a right-geodesic.

3. Left translation is an isometry of (GLV , dL), and right translation is an isometry of
(GV , dR).

4. The left translation of a left-geodesic is a left-geodesic (and similarly for right-geodesics).

Therefore, as expected, we obtain the following result:

Corollary 35. [Equivalence of Optimal Matches in Left- and Right- LDM] Consider the
problem of minimising

J (φ) =
1

2

∫ 1

0
‖v(t)‖2V dt+ E(φ1 · I, J) , (4.3.2)

for φ0 = IdΩ, and with either constraint

∂tφt = dφt · vt (Left-LDM constraint) (4.3.3)

or
∂tφt = vt ◦ φt (Right-LDM constraint). (4.3.4)

Then

1. The optimal endpoint φ1 is the same with either constraint.

2. If φt minimises J in Left-LDM, then ψt := φ−1
1−t ◦ φ1 minimises J in Right-LDM.

3. If ψt minimises J in Right-LDM, then φt := ψ1 ◦ ψ−1
1−t minimises J in Left-LDM.

Optimal paths in Left-LDM are left-geodesics, while optimal paths in Right-LDM are right-
geodesics.

Although not surprising, this result enables the use of spatially varying kernels
that can defined using a variational approach. Let us consider, as in the previous
section, a family of RKHS (Hi)i=1,...,n and an operator A : H1 ⊕ . . . ⊕ Hn 7→ H =
H1 + . . .+Hn. On the space H , we introduce

‖v‖2H = inf

{
n∑
i=1

‖vi‖2Hi
∣∣∣A(v1, . . . , vn) = v

}
. (4.3.5)
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Using again duality and under mild assumptions, the kernel associated with H is
H∗ 3 p 7→

∑n
i=1Ki(A

∗p)i ∈ H .
Let us give an instance of it in the context of biomedical images. Suppose we

have a partition of unity ((χi)i=1,...,n) of the domain of interest (a manual segmen-
tation of the biological shape) where we have some knowledge of the deformability
properties of the shape, modeled by the kernel Ki. The map A can be chosen as∑n

i=1 χivi and the corresponding kernel is

K =
n∑
i=1

χiKiχi . (4.3.6)

ROI

Source image Target image Partition of unity LIDM

SyNinit SyN8,0 SyN1,2 MK-LDDMM

FIGURE 4.3: Results of image registration tests on a synthetic exam-
ple.

The experiment of Figure 4.3 is taken from [SRV13], and it shows registration
results for a synthetic example which includes features at different scales. LIDM
shows the results of the registration using a kernel which is defined accordingly to
the partition of unity shown in the figure (two gaussian kernels with a large σ on the
white and a small σ on the black). As expected, it performs better than the sum of
kernel because it captures the small scale deformations.

The use of spatially varying kernels provably improves the registration results
on real data. However, the shortcoming of this approach is that the kernel does not
evolve with the deformed shape. For small/medium deformations, it may not be a
problem but it cannot be applied in the case of large deformations. In such a case, the
kernel has to depend on the shape itself and it can be formulated in the framework of
Proposition 3. Such approaches have actually been developed in [You12, ATTY15] in
which the operatorA depends on the shape itself, but developing models for images
associated with an efficient implementation remains open.

4.4 Learning the metric

This section is based on [VR14], joint work with L. Risser.



4.5. Optimal transport for diffeomorphic matching 53

Instead of having a partition of unity drawn by the user, it is natural to ask
whether the smoothing kernel can be learnt from data. We summarize here an ap-
proach proposed in [VR14] to learn the parameters from a given population and a
given template.

Building on the LIDM model, we aim at designing a set of kernels expressing
spatially-varying metrics. We use (symmetric) positive definite matrices M as a
parametrization of this set of kernels. In order to ensure smoothness of the defor-
mations, any kernel of this set has to satisfy the constraint that the Hilbert space of
vector fields is embedded in the Banach space of C1 vector fields. To enforce this
constraint, we propose the following parametrization,

K = {K̂MK̂ |M SDP operator on L2(Rd,Rd)} , (4.4.1)

where K̂ is a spatially-homogeneous smoothing kernel (typically Gaussian). Now,
the variational model consists in minimizing the functional, with β a positive real:

F(M) =
β

2
d2
S++(M, Id) +

1

N

N∑
n=1

min
v
JIn(v,M) , (4.4.2)

where M is a symmetric The first term is a regularizer of the kernel parameters so
that that the minimization problem is well posed. Here, it favors parametrizations
of M close to the identity matrix but other a priori correlation matrix could be used.
The term d2

S++(Id,M) can be chosen as the squared distance on the space of positive
definite matrices given by ‖ log(M)‖2. Here again, other choices of regularizations
could have been used such as the log-determinant divergence.

This model has been implemented in [VR14] where we used simple method of
dimension reduction (since the matrix M is of size n2 where n is the number of
voxels) and it gave promising results. We refer to the article for the experiments. This
direction of research should probably be revisited and should incorporate some of
the technics developed in deep learning in order to learn the shape dependent metric
while still constraining the evolution to remain diffeomorphic.

4.5 Optimal transport for diffeomorphic matching

This section is based on joint work with J. Feydy, B. Charlier and G. Peyré in [FCVP17].
Using entropic optimal transport as a similarity measure has been advocated in

[FCVP17]. Entropic regularization of (unbalanced) optimal transport not only per-
mitted the use of fast algorithms to solve it but it also defines a smooth convex data
similarity between positive Radon measures. Therefore, due to its global nature, we
expect such similarities to be better behaved than the ones currently used in shape
matching. Let us discuss a bit state of the art data similarity measures for embedded
shapes such as surfaces or curves: Such a similarity should be parametrization in-
variant and weak dual norms on the space of currents, or varifolds, see [VG05, CT13]
for instance, have been put forward. For instance, in the case of measures, such
norms takes the form, for H a usually Gaussian RKHS

DH(µ, ν) = sup
f∈B1(H)

〈f, ν − µ〉 , (4.5.1)
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whereas the L1 Wasserstein distance, denoted by W1 is defined by

W1(µ, ν) = sup
f∈Lip1(H)

〈f, ν − µ〉 , (4.5.2)

where the supremum is taken over the space of Lipschitz function of Lipschitz con-
stant less or equal than 1. Although it may have a similar formulation, the two norms
are very different, for instance in terms of the rate of convergence of an empirical
measure to its limit measure (see for instance [FG15]). In our experiments [FCVP17],
the behavior seems in favor of the regularized optimal transport distance, since the
kernel metrics behave as a sort of semi-local L2 norm.

Let us note that for the use of the entropic regularized optimal transport on an
embedding, one first need a map from the space of embeddings Emb to the space of
nonnegative Radon measures on a spaceX , Ψ : Emb 7→ M+(X). There is a choice of
space X , that is for instance representing a surface given by a triangulation as just a
measure supported by the vertices of the triangulation, or as a measure on the space
of (centers of triangles, normals) where the weight is given by the surface of the
triangle. Then, different costs can be used such as the ones described in [VG05, CT13]
depending on the context.

Open question 36. A question of practical interest is how to extend such a similarity
measure to the space of images. A natural attempt would be to lift the image as a measure
supported on its graph, as done in [TPK+16]. However, a different point of view can be
taken by considering a binary image as a singular measure on its level line and use standard
optimal transport on this embedded object, to fit in the approach described above. Therefore,
a probably more promising extension consists in lifting the image as a collection of level lines
weighted by the gradient. This is future work.

4.6 Geodesic regression

This section is based on joint work with M. Niethammer and his student [NHV11].
As advocated in the introduction of this document, the LDDMM framework en-

ables the generalizations of Euclidean tools since it is Riemannian in the strong sense,
when one chooses, as presented in Chapter 2, a high order Sobolev metric. The sim-
plest one is probably geodesic regression in which the goal consists in fitting some
given shape time sequence with a single geodesic where the unknown parametriz-
ing the geodesic are the shape and the slope. Therefore, the data is represented as a
low dimensional subspace in the space of shapes.

In [NHV11], we developed this model on the space of images. Recall that it is
possible to reformulate the registration problem as an optimization problem on the
initial momentum as explained in the introduction 1.3.

J (P0) =
1

2
〈P0,KP0〉L2 +

n∑
k=1

S(I(t), Jk) (4.6.1)

under the PDE constraint 
∂tI + 〈∇I, v〉 = 0

∂tP +∇ · (Pv) = 0

v +K(P∇I) = 0 ,

(4.6.2)

and the initial conditions P (0) = P0 and I(0) = I0. This requires in particular an
algorithm for solving the variational problem and it has been proposed in [VRRC12],
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which uses an efficient implementation of the adjoint equations associated with the
system (4.6.2). The adjoint equations in terms of Î , P̂ , V̂ , the adjoint variables to
I, P, v read 

˙̂
P +∇P̂ · v −∇I ·K ? V̂ = 0
˙̂
I +∇ · (Iv) +∇ · PK ? V̂ = 0

V̂ + Î∇I − P∇P̂ = 0 ,

(4.6.3)

subject to boundary conditions{
Î(1) + I(1)− J = 0 ,

P̂ (1) = 0 ,
(4.6.4)

in the case where n = 1 and d is the squared L2 distance. Note in particular that the
solution to this system can be computed explicitly if one has computed the inverse of
the flow of the vector field v. This vector field being smooth, numerical algorithms
perform better on the flow, rather than solving directly the advection and continuity
equations. More precisely, we have that the solution satisfies the integral relation

P̂ (t) = P̂ (1) ◦ φt,1 −
∫ 1
t [∇I(s) · v̂(s)] ◦ φt,s ds ,

Î(t) = Jac(φt,1)Î(1) ◦ φt,1
+
∫ 1
t Jac(φt,s)[∇ · (P (s)v̂(s))] ◦ φt,s ds ,

(4.6.5)

with: 
v̂(t) = K ? [P (t)∇P̂ (t)− Î(t)∇I(t)] ,

P (t) = Jac(φt,0)P (0) ◦ φt,0 ,
I(t) = I(0) ◦ φt,0 ,

(4.6.6)

where φs,t
.
= φ0,t ◦ φ−1

0,s defined by the flow of the time-dependent velocity field
v(t) = −K ? P (t)∇I(t). Note that we used a second-order finite volume method
using the Total Variation Diminishing (TVD) MinMod limiter to compute the inverse
of the flow [LeV07]. In the same direction, we extended in [SVN15] the shooting
system of cubic splines in order to represent data with few parameters.

4.7 Longitudinal deformation model for Alzheimer disease

This section is based on joint work with J.B. Fiot and L. Risser and other collaborators
[FRR+14].

In this section, we briefly present the work done in [FRR+14] which aims at clas-
sifying, based on imaging data, patients who present mild cognitive impairment
(MCI), between those who are going to develop the Alzheimer disease and those
who will remain MCI. The available data are from the ADNI database and concerns
a hundred of patients: for each patient, we have the shape of the segmented hip-
pocampus at two different timepoints on a one year time interval. We proposed to
use the LDDMM framework and the shooting algorithm [VRRC12], to represent the
longitudinal deformation of the hippocampus by their initial shape at the first time-
point and the initial momentum, or equivalently, the initial vector field given by
the shooting algorithm that minimizes Formulation (4.6.1), after a rigid alignment of
the shapes. Then, a common template is defined via a Karcher mean algorithm, as
in [VRHR11] and all the momentums, that are defined on the patient hippocampus
shape, are mapped onto this template. Different mappings have been tried, such as
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FIGURE 4.4: Different regularizations for the classification task.

coadjoint transport (i.e. in this case pushforward), adjoint transport of the vector
field, and the former has finally been used due to better performance with respect
to the classification results. The last step consists in using machine learning meth-
ods of supervised learning to separate the two populations: each patient evolution
is represented by a density in the common domain of the template. Thus, the di-
mensionality of data is huge in comparison with the number of samples. Therefore,
we used a regularized SVM method, with different regularizations such as Sobolev,
total variation and fused lasso. Ideally, our aim was to identify some regions of
particular interest using regularizations such as total variation. However, the best
performances were obtained by the fused lasso regularization, see Figure 4.4.

The results were promising and in particular we have shown that initial mo-
menta of the hippocampus deformations do capture information relevant to the dis-
ease progression. There is a wide range of perspectives opened by this paper and
in particular the question of how to transport the momentum associated with the
patient hippocampus evolution to the common template in which machine learning
method can be used. Such a transport has to be a nonlinear map and we unfortu-
nately did not include parallel transport because of the implementation difficulties.
This motivated the conference paper [NV13] which studies the construction of Rie-
mannian metrics on the space of shapes in order to perform statistics on small longi-
tudinal evolutions and to preserve the statistical power of global indicators, such as
volume variation. In particular, we discussed the absence of scale invariance prop-
erties of parallel transport in the LDDMM framework and we used the De Rham de-
composition theorem (Riemannian geometry) to propose Riemannian metrics that
leave invariant by parallel transport a collection of global evolution indicators.
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