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Abstract

This note gives a summary of the presentation that I gave at the workshop
on shape analysis'. Based on [ |, we present a generalization
of optimal transport to measures that have different total masses. This general-
ization enjoys most of the properties of standard optimal transport but we will
focus on the geometric formulation of the model. We expect this new metric to
have interesting applications in imaging.

1 Motivation and a Dynamical Model

In several contexts of applications including imaging, it is natural to consider data that
can be represented by densities and these densities might have different masses. Often,
optimal transport has been used in these applications (for instance, | , D
since it provides an "easily computable" (at least, an efficient approximation [ D
distance between probability measures that reflects a geometric displacement between
them. Therefore, the mass constraint on the densities has to be taken into account and
this problem seems to bring renewed interest in the applied mathematics literature
[ , , , , | although this issue has been addressed since
Kantorovich | ]

In the following, we describe a dynamical approach to define optimal transport
between general non-negative Radon measures. We will present the model only in a
smooth setting although it is well defined on the space of Radon measures.

The Benamou-Brenier formulation: In | ], the authors formulated the
Wasserstein L? distance as a convex variational problem, inspired by a fluid dynamic
approach. In what follows, M will be a compact manifold without boundary. Let
p € C*(M,R}) be a positive function, note that all the quantities will be implicitly
time dependent. The dynamic formulation of the Wasserstein distance consists in
minimizing
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subject to the constraints p+ V - (vp) = 0 and initial condition p(0) = pg and final
condition p(1) = p;. Equivalently, following | |, a convex reformulation using the

momentum m = pv reads
(t,
/ / |m N gt (2)
M

subject to the constraints p + V - m = 0 and initial condition p(0) = py and final
condition p(1) = p;. Let us underline that the functional (4) is convex in p, m and the
constraint is linear.

The Wasserstein-Fisher-Rao metric: The continuity equation enforces the
mass conservation property. In view of the optimal transport generalization, this con-
straint needs to be relaxed, for instance by introducing a source term p € C*°(M,R),

p==V-(vp)+p. (3)
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For a given variation of the density p, there exist a priori many couples (v, ) that
reproduces this variation. Following | |, it can be determined via the minimization
of a norm of (v, ) for an arbitrary choice of the norm. The penalization of  was chosen
in | | as the L? norm but a natural choice is rather the Fisher-Rao metric

T 2
FR(p) = % /M ‘;(é” x)) dz dt

since (1) it is 1-homogeneous with respect to the couple (p, p) and (2) it is parametriza-
tion invariant | |. The first point is important for convex analysis properties in
order to define the model on singular measures and the second point is natural from
a modeling point of view if one thinks that p represents a growth term. Thus, the
problem becomes:

wrn = [ [ B [

subject to the constraints p+V-m = p and initial condition p(0) = pg and final condi-
tion p(1) = p;. This dynamical formulation enjoys most of the analytical properties of
the initial Benamou-Brenier formulation (1) and especially convexity. An important
consequence is the existence of optimal paths in the space of time-dependent measures

[ J

2 A Geometric Point of View

Not only analytical properties are conserved but also some interesting geometrical
properties of standard optimal transport such as the Riemannian submersion of Otto
[ |. Namely, for a fixed reference measure pg, the map ¢ — . (pg) from the group
of diffeomorphisms of M with the L?(pg) metric into the space of densities with the
Wasserstein L? metric. See the appendix of | | for more details. This property
is proved simply by passing from the Eulerian point of view of the formulation (1) to
a Lagrangian formulation. In this section, we extend this property to the generalized
model.

A cone metric: Let us first discuss informally what happens for a particle
of mass m(t) at a spatial position z(¢) in a Riemannian manifold (M, g) under the
generalized continuity constraint (3). The system reads

{w) = v((t)) -

where a = % is the growth rate. The action associated with the action defined

in (4) is fol lo(x(t))]>m(t) + fil((tt))z dt. Thus, considering the particle as a point in

M x R%, the Riemannian metric seen by the particle is mg + d?mZ. Using the change
of variable r = \/m, we get r2g + 4 dr? which is known under the name of cone metric
in Riemannian geometry. This is a flat metric when M is flat and if M = R, a local
isometry with the Euclidean space is given by (xz,m) — me”/ 2 € C. The distance
on M x R is explicit in terms of the distance on M with a Riemannian metric g,

id((ml,ml), (w2,m2))? = mg +my — 2y/m1my cos < dp(z1, 22) A 7T) . (6)

This implies that mass can appear and disappear at a finite cost. In other words,
the cone metric is not complete but adding the vertex of the cone, which represents
M x {0}, to M x R* turns it into a complete metric space.

Note that this distance squared is 1-homogeneous in (my,ms).



A semi-direct product of groups: Going from Eulerian to Lagrangian coordi-
nates in this new model is properly done by introducing a semi-direct product of group
that extends the group of diffeomorphisms by introducing an action on mass that can
be described as pointwise multiplication with a positive function on M. Working in
a smooth context, we define A(M) = {\ € C®°(M,R) : X\ > 0}. It is a group under
pointwise multiplication. We will also denote the same space as Dens(M) to represent
densities, that are smooth and positive L' function w.r.t. a reference measure v. We
define the semi-direct product of group between Diff (M) and A(M) in order to turn
the map 7 defined by

7 (Diff (M) xg A(M)) x Dens(M) — Dens(M)
T (9, 0),0) = ¢ Apap = 02 (Ap)

into a left-action of the group Diff (M) x ¢ A(M) on the space of (generalized) densities.
The group composition law is defined by:

(1, A1) - (92, A2) = (010 92, (A1 0 P2)A2) (7)
The important result is the following:

Proposition 1. Let py € Dens(M) and 7o : Diff (M) xg A(M) — Dens(M) be the
map defined by mo(, \) = 0. (Apo).

Then, the map mq is a Riemannian submersion of the metric L*(M, M xR?.) (where
M x R% is endowed with the cone metric (6)) on the group Diff (M) xg A(M) to the
Wasserstein-Fisher-Rao on the space of generalized densities Dens(M).

A direct application of this result is the formal computation of the sectional cur-
vature of the Wasserstein-Fisher-Rao in this smooth setting by applying O’Neill’s
formula, see | ].

The corresponding Monge formulation: Another important consequence
of the L? metric on the group is that one can define a Monge formulation of the
Wasserstein-Fisher-Rao metric as follows:

WE(po,p1) = (Lnf) {Iltes A) = (I, Dl z2(p0) = 9+ (Apo) = p1} (8)

3 The Kantorovich Formulation

From a variational point of view, it is important to derive a relaxation of the Monge
formulation. It is of interest to understand first the simple situation when the source
and target measures are single Dirac masses and when M is a convex and compact
domain in the Euclidean space | ]

Proposition 2. Let M be a convex and compact domain in RY with the Euclidean
metric. Let m16,, and mady, be two Dirac masses.

If 2d(z1,22) < /2, there exists a unique geodesic which is m(t)8, ) where (z(t), m(t))
is the geodesic in M x R* with the cone metric between (x1,m1) and (x2,m3).

If %d(xl,xg) > /2, there exists a unique geodesic which is my(t)dz, + ma(t)ds,
where my1(t) = my(1 — )2 and mo(t) = maot? which describe the geodesics between
(zi,m;) and the vertex of the cone denoted by 8 fori=1,2.

If %d(ml, x9) = /2, there exists an infinite number of geodesics which are interpo-
lations of the two first types defined above.

The important point is that passing to the case of measures the angle of the cone
has been (surprisingly) divided by 2. This is because we are not looking for geodesics on
M xR% but on the space of measures on M. The generalization to any positive Radon



measures gives a Kantorovich relaxation: For two given positive Radon measures p1, p2,
we define, for M(M?) the space of positive Radon measures on M?2,

I(p1, p2) = {(71,72) € (M+(M2))21 (Proj;)«m = p1, (Projs)sy2 = PQ} )

where Proj; and Proj, denote the projection on the first and second factors of M?2.
The variational problem associated with the Wasserstein-Fisher-Rao distance is

. d’Yl d’Y2
WF(p1,p2)? = inf / d2<x,, ,)d z,Y), 10
(Pl p2) (v1,72) €T (p1,p2) J pp2 ( dy ) (y dy ) PY( y) ( )

where d? is the square of the cone distance defined in (6) and + is any measure that
dominates p; and ps. The fact that the integration does not depend on this choice is
because of the 1-homogeneity of d? in function of the mass. We also state the dual
formulation:

Proposition 3. It holds

WEF?(pg,p1) =  sup /¢(w)dpo+/ Y(y) dps (11)
(d),dJ)EC(M)z M M

subject to V(z,y) € M?,

(12)

{aﬁ(w) <1, Py <1,
(1—¢(x)(L —1(y)) > cos® (|z —y|/2)

For numerical computation, this formulation can be further reduced with a change
of variable given by taking the logarithm of the multiplicative constraint (12).

4 Conclusion

We generalized the Wasserstein L? distance to a Riemannian-like metric on the space
of densities whose total masses are different. Of important interest for application is
that a static formulation is equivalent to the original dynamic one, which reduces the
computational time. This Wasserstein-Fisher-Rao distance might be a useful tool in
applications: On one hand, it can be seen as a modification of the Fisher-Rao metric
that is stable under small spatial deformations and on the other hand as a modification
of the Wasserstein metric which does not allow for mass transfer if masses are too far
apart (note once again that mass creation and destruction is enabled due to the cone
metric).

This natural generalization introduces a cone metric on the product between space
and mass. In a smooth setting, it is possible to formally apply O’Neill’s formula to
obtain the sectional curvature of the space of generalized densities. However, we did
not study the global geometry of the space: one expects that, as for the Euclidean
cone, the curvature is concentrated at its singularity. We refer to | , |
for more details and generalizations.

After the presentation at the workshop, two important papers | , |
also appeared on the same model motivated by different applications.
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