Algèbre Linéaire 2

Une attention particulière doit être apportée à la lisibilité de la copie, à la rédaction des réponses afin d'obtenir la totalité des points. Sauf mention du contraire, il faut justifier vos réponses.

Questions de cours 1 : (4 points)

- 1. Donner la définition de la somme directe de 3 sous-espaces vectoriels. (1 point)
- 2. Soient A et B deux matrices de $M_n(\mathbb{R})$ pour $n \ge 1$. Que veut dire la phrase « A est semblable à $B \gg ?$ (1 point)
- 3. Donner la dimension de $M_n(\mathbb{R})$ et en donner une base $(n \ge 1)$. (1 point, on ne justifiera pas que la famille proposée est une base.)
- 4. Montrer que, pour deux matrices A, B de $M_n(\mathbb{R}), n \ge 1$ on a tr(AB) = tr(BA). (1 point)
- Correction 1 (Question de cours 1) 1. On dit que F, G, H trois sous-espaces vectoriel d'un espace vectoriel E sont en somme directe si « Quelque soit $(x, y, z) \in F \times G \times H$, l'égalité x + y + z = 0 implique x = y = z = 0. »
 - 2. Pour $A, B \in M_n(\mathbb{K})$, « A est semblable à B »si il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que

$$A = PBP^{-1}. (1)$$

- 3. La dimension de $M_n(\mathbb{R})$ est n^2 et la famille de matrices $(A_{ij})_{i,j\in[1,n]}$, où A_{ij} est définie par ses coefficients $A_{ij}(k,l)=1$ si k=i et l=j et 0 sinon, en est une base.
- 4. Pour deux matrices A, B de $M_n(\mathbb{R})$, $n \ge 1$ on a tr(AB) = tr(BA) car

$$tr(AB) = \sum_{i=1}^{n} [AB]_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{kj}$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{kj}$$
$$= tr(BA)$$

Dans les formules précédentes, on a échangé le signe somme, ce qui est licite car la somme porte sur un nombre fini de nombres.

Exercice 1 (1 point) On considère l'espace vectoriel \mathbb{R}^2 et l'application $c : \mathbb{R}^2 \to \mathbb{R}^2$ définie par c(x,y)=(x,-y). En notation complexe, on a donc $c(z)=\bar{z}$, avec $\bar{z}=x-iy$ le conjugué de z=x+iy.

1. L'application c est-elle linéaire sur le \mathbb{R} espace vectoriel \mathbb{R}^2 ? (0,5 point)

- 2. Sur le \mathbb{C} espace vectoriel \mathbb{C} , l'application $c(z) = \bar{z}$ est-elle linéaire? (0,5 point)
- Correction 2 (Exercise 1) 1. L'application c est bien linéaire sur le \mathbb{R} espace vectoriel \mathbb{R}^2 . En effet, quelques soient $(x,y) \in \mathbb{R}^2$, $(z,w) \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, on a $c(x+\lambda z, y+\lambda w) = (x+\lambda z, -y-\lambda w) = c(x,y) + \lambda c(z,w)$.
 - 2. L'application $c(z) = \bar{z}$ n'est pas linéaire sur \mathbb{C} . En effet, pour $\lambda = i$, on a $c(i \times 1) = -i$ et par ailleurs, $i \times c(1) = i$. On a donc $c(i \times 1) \neq i \times c(1)$, ce qui contredit la \mathbb{C} linéarité de c.

Exercice 2 (4,5 points) Sur \mathbb{R}^3 , on considère la base canonique, qu'on notera $\mathcal{B} = (e_1, e_2, e_3)$. Soient $v_1 = (1, 1, 1), v_2 = (2, 0, 0)$ et $v_3 = (3, 1, 0)$.

- 1. Montrer que $C = (v_1, v_2, v_3)$ est une famille libre de \mathbb{R}^3 et en déduire que c'est une base. (1 point)
- 2. Écrire les coordonnées de w = (3, 2, 1) dans la base C. (1,5 points)
- 3. On définit l'endomorphisme f de \mathbb{R}^3 par $f(e_1) = v_1$, $f(e_2) = v_2$ et $f(e_3) = v_3$. Écrire la matrice de f dans la base \mathcal{C} (c'est-à-dire écrire $\mathrm{Mat}_{\mathcal{CC}}(f)$). On détaillera le raisonnement. (2 points)
- Correction 3 1. Comme \mathbb{R}^3 est de dimension 3 (d'après le cours) et le cardinal de la famille est 3, il suffit de démontrer qu'elle est libre pour montrer que c'est une base. Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$\sum_{i=1}^{3} \lambda_i v_i = 0. \tag{2}$$

En coordonnées, on a donc les trois équations suivantes

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0\\ \lambda_1 + \lambda_3 = 0\\ \lambda_1 = 0. \end{cases}$$

$$(3)$$

De la dernière équation, on remonte le système pour obtenir $\lambda_3 = 0$ et $\lambda_2 = 0$, ce qui prouve que la famille est libre.

2. La famille est une base, elle est en particulier génératrice. On résout le système

$$\sum_{i=1}^{3} \lambda_i v_i = (3, 2, 1). \tag{4}$$

On obtient le système suivant :

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 3\\ \lambda_1 + \lambda_3 = 2\\ \lambda_1 = 1 \,. \end{cases}$$
 (5)

On obtient, en remontant le système, $\lambda_1 = 1$, $\lambda_3 = 1$ et $\lambda_2 = -1/2$.

3. Par définition, la matrice de f dans la base canonique est la matrice de passage P_{BC} . C'est-à-dire $Mat_{BB}(f) = P_{BC}$. On a donc

$$\operatorname{Mat}_{\mathcal{CC}}(f) = P_{CB} \operatorname{Mat}_{\mathcal{BB}}(f) P_{CB} = P_{CB} P_{BC} P_{BC} = P_{BC}.$$
 (6)

La première égalité est donnée dans le cours et la troisième égalité vient du fait que $P_{CB}P_{BC} = \mathrm{Id}$.

Exercice 3 (7,5 points) On note \mathcal{B} la base canonique de \mathbb{R}^2 . Soit la matrice réelle $A \in M_2(\mathbb{R})$ donnée par $A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

- 1. Déterminer le rang de A. (1 point)
- 2. Montrer que l'endomorphisme Ψ de \mathbb{R}^2 canoniquement associée à A (c'est-à-dire l'endomorphisme $\Psi(X) = AX$ pour $X \in \mathbb{R}^2$) est un projecteur. (1 point)
- 3. Soient $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Montrer que $\mathcal{C} = (v_1, v_2)$ est une base de \mathbb{R}^2 et calculer $P_{\mathcal{CB}}$ et $P_{\mathcal{BC}}$ les matrices de passage associées. (2 points)
- 4. Montrer que A est semblable à $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. (1,5 points)
- 5. Calculer A^n pour $n \ge 2$. (1,5 points)
- 6. La matrice B est-elle semblable à $C=\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$? (0,5 point)
- Correction 4 1. La matrice A est non nulle donc son rang est supérieur ou égal à 1. De plus, ses deux vecteurs colonnes sont égaux donc colinéaires, ce qui implique que son rang est inférieur strictement à 2. En conclusion, on a donc rg(A) = 1.
 - 2. D'après le cours, il suffit de vérifier que $\Psi \circ \Psi = \Psi$. En choisissant la base canonique pour représenter l'endomorphisme Ψ , il suffit de voir que $A^2 = A$. En effet, on a :

$$A^{2} = \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^{2} = \frac{1}{4} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = A.$$
 (7)

3. On montre que v_1, v_2 est une base de \mathbb{R}^2 en montrant que cette famille est génératrice (car elle est de cardinal 2 et \mathbb{R}^2 est de dimension 2). On note (e_1, e_2) la base canonique de \mathbb{R}^2 . On a

$$\begin{cases} e_1 = \frac{1}{2}(v_1 + v_2) \\ e_2 = \frac{1}{2}(v_1 - v_2) . \end{cases}$$
(8)

La famille (v_1, v_2) est donc génératrice car elle engendre la base canonique. Pour les matrices de passage, l'énoncé donne les vecteurs de la base C dans la base canonique. On en déduit donc $P_{CB} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. En utilisant les formules (8), on a $P_{BC} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

4. On a $Av_1 = v_1$ et $Av_2 = 0$ donc

$$\operatorname{Mat}_{\mathcal{CC}}(\Psi) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = B.$$
 (9)

La matrice A est donc semblable à B.

- 5. La matrice A vérifie $A^2 = A$, on a donc par récurrence immédiate $A^n = A$ quelque soit $n \ge 1$.
- 6. La matrice A n'est pas semblable à la matrice C car $1 = tr(A) \neq tr(C) = 2$. (En effet d'après le cours, si A et B sont équivalentes alors tr(A) = tr(B)).

Exercice 4 (3 points) Soit $A = \{1, ..., n\}$ avec $n \ge 2$ un entier. On considère l'espace vectoriel $\mathcal{F}(A, \mathbb{R})$ des fonctions de A dans \mathbb{R} . On rappelle les lois de composition interne et externe associées à cet espace vectoriel : $(\lambda f + g)(i) = \lambda f(i) + g(i)$ avec $\lambda \in \mathbb{R}$ et f, g deux éléments de $\mathcal{F}(A, \mathbb{R})$.

- 1. Soit la famille $\mathcal{B} = (f_i)_{1 \leq i \leq n}$ définie par $f_i(i) = 1$ et $f_i(j) = 0$ pour $j \neq i$. Montrer que cette famille est une base de $\mathcal{F}(A, \mathbb{R})$ et en déduire la dimension de $\mathcal{F}(A, \mathbb{R})$. (1 point)
- 2. On définit φ l'endomorphisme de $\mathcal{F}(A,\mathbb{R})$ par les images des vecteurs de la base \mathcal{B} par $\varphi: \varphi(f_i) = f_{i+1}$ pour $i \leq n-1$ et $\varphi(f_n) = 0$. Écrire la matrice de φ dans la base \mathcal{B} . (C'est-à-dire écrire $\mathrm{Mat}_{\mathcal{BB}}(\varphi)$) (1 point)
- 3. On définit $\varphi^n = \underbrace{\varphi \circ \ldots \circ \varphi}_{n \text{ fois}}$. Montrer que $\varphi^n = 0$. (1 point)

Correction 5 1. On ne connaît pas a priori la dimension de l'espace $\mathcal{F}(A,\mathbb{R})$. Il faut donc montrer que la famille est libre et génératrice.

Montrons d'abord la liberté. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tel que

$$\sum_{i=1}^{n} \lambda_i f_i = 0_{\mathcal{F}(A,\mathbb{R})}, \qquad (10)$$

ce qui implique quelque soit $j \in [1, n]$ on a

$$\sum_{i=1}^{n} \lambda_i f_i(j) = 0. \tag{11}$$

D'après les propriétés de l'énoncé, on a

$$\sum_{i=1}^{n} \lambda_i f_i(j) = \lambda_j \,, \tag{12}$$

ce qui donne donc $\lambda_i = 0$. La famille est donc libre.

On montre maintenant que la famille est génératrice. Soit $g \in \mathcal{F}(A, \mathbb{R})$, comme pour la base duale d'un espace vectoriel, on a

$$g = \sum_{i=1}^{n} g(i)f_i. \tag{13}$$

En effet, on a quelque soit $j \in [1, n]$,

$$\sum_{i=1}^{n} g(i)f_i(j) = g(i)$$

donc les deux fonctions sont égales. La dimension est le cardinal d'une base et donc la dimension de $\mathcal{F}(A,\mathbb{R})$ est n.

2. Par définition de la matrice d'une application linéaire, on a

$$\operatorname{Mat}_{\mathcal{BB}}(\varphi) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
 (14)

C'est-à-dire des 1 juste au dessous de la diagonale et des 0 ailleurs.

3. Il suffit de prouver par récurrence $(f_i, \ldots, f_n) \in \text{Ker}(\varphi^{n-i+1})$ ceci pour $i \in [1, n]$. Cette propriété est vraie pour i = 1 d'après l'énoncé. Supposons la propriété vraie au rang i et montrons la au rang i + 1. On a donc $\varphi^{n+1-i}(f_j) = 0$ pour $j \in [i, n]$, on a donc, en composant cette égalité par φ ,

$$\varphi(\varphi^{n+1-i}(f_j)) = \varphi(0) = 0. \tag{15}$$

On a de plus

$$\varphi^{n+2-i}(f_{i-1}) = \varphi^{n+1-i}(\varphi(f_{i-1})) = \varphi^{n+1-i}(f_i).$$

Or, on a par hypothèse, $\varphi^{n+1-i}(f_i) = 0$. Ce qui montre la propriété voulue. Pour conclure, il suffit de voir que la propriété au rang n donne le résultat, puisque $(f_1, \ldots, f_n) \in \text{Ker}(\varphi^n)$. Ce qui signifie $\varphi^n = 0$.