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3 / 37Super-resolution of point sources

The signal we want to recover is a superposition of point sources,

m0 =
N∑
i=1

a0,iδx0,i .

Many different methods
▶ Prony [Prony 1795, Kunis et al. ’16, Sauer ’17. . . ]

▶ MUSIC [Schmidt 1986, Liao & Fannjiang ’14. . . ],
▶ ESPRIT [Kailath 1990, Li & Liao ’20. . . ]

▶ Matrix pencil [Hua 1988, Sarkar & Peirera 1995, Liu & Ammari ’22. . . ] ,
▶ . . .

The Beurling LASSO (BLASSO) [Bredies & Pikkarainen’13, Azaïs & De Castro ’14,

Candès & Fernandez-Granda’14]

min
m∈M(Ω)

|m| (Ω) s.t. Φm = y . (P0(y))

see the review [Laville et al.’21].
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4 / 37Robustness of the support

Assume that
▶ the unknown is m0 =

∑N
i=1 a0,iδx0,i ,

▶ the observation is y = Φm0 + w , with w some noise.

Theorem (D.-Peyré 2015)
If some “non-degeneracy” assumption holds, there exists, α > 0, λ0 > 0 such that for
0 ⩽ λ ⩽ λ0 and ∥w∥H ⩽ αλ,
▶ the solution m(λ,w) to Pλ(y + w) is unique and has exactly N spikes,

m(λ,w) =
∑N

i=1 ai (λ,w)δxi (λ,w),
▶ the mapping (λ,w) 7→ (a, x) is C 1.
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Theorem (D.-Peyré 2015)
If some “non-degeneracy” assumption holds, there exists, α > 0, λ0 > 0 such that for
0 ⩽ λ ⩽ λ0 and ∥w∥H ⩽ αλ,
▶ the solution m(λ,w) to Pλ(y + w) is unique and has exactly N spikes,

m(λ,w) =
∑N

i=1 ai (λ,w)δxi (λ,w),
▶ the mapping (λ,w) 7→ (a, x) is C 1.

The non-degeneracy holds [Poon et al. 2021] if :

▶ The kernel K(x , y)
def.
= ⟨Φδx , Φδy ⟩ is smooth and decays sufficiently as

d(x , y) ↗,
▶ The locations x0,1, . . . , x0,N of the spikes are sufficiently separated.

See also the non-negative case [Denoyelle et al.’16, Poon & Peyré’19, D.’20...] and
other partly smooth or mirror-stratifiable regularizations [Vaiter et al.’15, Fadili et

al.’18...].



5 / 37Algorithms

(Exp. by Q. Denoyelle)

Frank-Wolfe with local refinement steps[Bredies & Pikkarainen’13, Boyd et al.’15,

Denoyelle et al.’18]

▶ Greedy algorithms
▶ Non-convex refinement steps (exploits the continuous nature of the

problem)
▶ Yet, global convergence guarantees (convex optimization)



6 / 37Super-resolution of piecewise constant images

The signal we want to recover is piecewise constant,

u0 =
N∑
i=1

a0,i1E0,i .

where ∂E0,i is “not too oscillating”.

We want to reconstruct cartoon images [Meyer’01, Aujol et al.’05....]



7 / 37Summary

1. Setting

2. What is the structure of the solutions?

3. Is that structure stable?

4. Algorithm and numerical results



8 / 37An Inverse Problem

Unknown image u0 ∈ L2(R2)

We assume that

Φu
def.
=

(∫
R2

u(x)φi (x)dx
)

1⩽i⩽M

,

with {φi}Mi=1 ⊂ L2(R2).

Goal
Recover u0 from y .

Observations y0 = Φu0 ∈ RM

Noisy observations y = y0 + w
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9 / 37The total variation of an image

The total (gradient) variation of u is∫
R2

|Du| def.
= sup

{∫
R2

u(x)divz(x)dx ; z ∈ C ∞
c (R2), ∥z∥∞ ⩽ 1

}
=

∫
R2

|∇u(x)| dx if u is smooth.

▶ If u = 1E with E ⊆ R2 of class C 1, then
∫
R2 |D1E | = H1(∂E) = P(E).

▶ More generally, if E ⊆ R2, we define its perimeter as P(E)
def.
=

∫
R2 |D1E |.



10 / 37Variational approach

Following [Rudin et al.’92, Chambolle & Lions ’97,. . . ], we consider the problems
▶ (noiseless setting, y0 = Φu0)

min
u∈L2(R2)

∫
R2

|Du| s.c. Φu = y0 (P0(y0))

▶ (noisy setting, y = y0 + w)

min
u∈L2(R2)

∫
R2

|Du|+ 1
2λ

∥Φu − y∥2 (Pλ(y))

noisy observations y solution (well-chosen λ) solution (high λ)



11 / 37Summary

1. Setting

2. What is the structure of the solutions?

3. Is that structure stable?

4. Algorithm and numerical results



12 / 37A representer theorem for Total Variation Image Recovery

Theorem ([BCCDGW ’18, Bredies & Carioni’18])

There is a solution in argminPλ(y) (resp. argminP0(y0)) of the form

u =
r∑

i=1

ai1Ei .

with r ⩽ M and each Ei a simple set.

The simple sets are the “simply connected” sets in
the measure theoretic sense.



12 / 37A representer theorem for Total Variation Image Recovery

Theorem ([BCCDGW ’18, Bredies & Carioni’18])

There is a solution in argminPλ(y) (resp. argminP0(y0)) of the form

u =
r∑

i=1

ai1Ei .

with r ⩽ M and each Ei a simple set.

The simple sets are the “simply connected” sets in
the measure theoretic sense.

Idea of proof:
▶ Each extreme point of argminP belongs to a face of dimension at most

M − 1 of
{
u ∈ L2 ;

∫
R2 |Du| ⩽ t

}
where t = TV (u).

▶ Use Carathéodory’s theorem together with

Theorem ([Fleming 1957, Ambrosio et al.’01])

The extreme points of
{
u ∈ L2 ;

∫
R2 |Du| ⩽ 1

}
are the functions of the form

u = ±1E/P(E), where E is a simple set.



13 / 37Representation of the solutions

The extreme points of argmin(P) are sums of at most M indicators of simple
sets,

u =
M∑
i=1

ai1Ei .

TV regularization promotes cartoon images
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14 / 37Understanding the faces of the TV unit ball

Let F be a (linearly closed) face of

CBV
def.
=

{
u ∈ L2(R2) ;

∫
R2

|Du| ⩽ 1
}
.

What can we say about u ∈ F , if F has dimension k ?

☞ See [Bach 2009, Fujishige 2005] for submodular functions on a finite graph. But,
in our case
▶ CBV is not a polyhedron,
▶ some faces are not exposed.



15 / 37Finite-dimensional faces

Let F be a k-dimensional face of CBV
def.
=

{
u ∈ L2(R2) ;

∫
R2 |Du| ⩽ 1

}
.

Theorem (D.’22)
▶ F is a polytope (finite number of extreme points)
▶ Every u ∈ F takes at most k + 1 nonzero values.
▶ There is a partition {Hi}1⩽i⩽k+2 of R2 with Hi indecomposable, such that

every u ∈ F is constant on each Hi ,

u =
k+1∑
i=1

ti1Hi

p

In fact, almost every u in F takes exactly k + 1 nonzero values.



15 / 37Finite-dimensional faces

Let F be a k-dimensional face of CBV
def.
=

{
u ∈ L2(R2) ;

∫
R2 |Du| ⩽ 1

}
.

Theorem (D.’22)
▶ F is a polytope (finite number of extreme points)
▶ Every u ∈ F takes at most k + 1 nonzero values.
▶ There is a partition {Hi}1⩽i⩽k+2 of R2 with Hi indecomposable, such that

every u ∈ F is constant on each Hi ,

u =
k+1∑
i=1

ti1Hi

p

In fact, almost every u in F takes exactly k + 1 nonzero values.



16 / 37Example

1A
P(A)

1B
P(B)

1A∩B
P(A∩B)

1A∪B
P(A∪B)

Generic 2-face of CBV.



17 / 37What about exposed faces?

▶ An exposed face of CBV is a set of the form

F = argmaxu∈CBV

∫
R2

uη

given some function η ∈ L2(R2).
▶ The extreme points are of the form u = ±1E/P(E), where

E ∈
(
argmaxE∈R2

∫
E
η

P(E)

) (
resp. −

∫
E
η

P(E)

)
(generalized Cheeger problem)

▶ If η ∈ L2(R2) ∩ C 1
b (R2), then E is a set of class C 3.
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18 / 37Faces exposed by C 1
b functions

1A
P(A)

1B
P(B)

1A∩B
P(A∩B)

1A∪B
P(A∪B)

Generic 2-face of CBV.



18 / 37Faces exposed by C 1
b functions

1A
P(A)

1B
P(B)

− 1C
P(C)

A 2-face exposed by some η ∈ L2(R2) ∩ C 1
b (R

2)

A k-face exposed by some η ∈ L2(R2) ∩ C 1
b (R2) is a simplex,

∀u ∈ F , u =
k+1∑
i=1

ai1Ei .

and this decomposition is unique.



18 / 37Faces exposed by C 1
b functions

1A
P(A)

1B
P(B)

− 1C
P(C)

A 2-face exposed by some η ∈ L2(R2) ∩ C 1
b (R

2)

Definition
A k-simple function is a function of the form

u =
k∑

i=1

ai1Ei .

where the Ei ’s are C 1 and ∂Ei ∩ ∂Ej = ∅ for i ̸= j .



19 / 37Summary

1. Setting

2. What is the structure of the solutions?

3. Is that structure stable?

4. Algorithm and numerical results



20 / 37Stability analysis - the setting

min
u∈L2(R2)

∫
R2

|Du|+
1
2λ

∥Φu − y∥2 (Pλ(y))

min
u∈L2(R2)

∫
R2

|Du| s.c. Φu = y0 (P0(y0))

Proposition ([Hofmann et al., 2007])

If λ(n) → 0 and
∥∥w (n)

∥∥2
/λ(n) → 0, every sequence u(n) of solutions to Pλ(n) (y (n)) has

cluster points (in the weak L2 topology), each of which is a solution to P0(y0).
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min
u∈L2(R2)

∫
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We know that
▶ For each λ > 0, each y = y0 + w , there is a solution to Pλ(y) of the form

u =
∑k

i=1 ai1Ei and k = k(λ,w) ⩽ M.
▶ Same for λ = 0 and y0.
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min
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∫
R2

|Du|+
1
2λ

∥Φu − y∥2 (Pλ(y))

min
u∈L2(R2)

∫
R2

|Du| s.c. Φu = y0 (P0(y0))

We know that
▶ For each λ > 0, each y = y0 + w , there is a solution to Pλ(y) of the form

u =
∑k

i=1 ai1Ei and k = k(λ,w) ⩽ M.
▶ Same for λ = 0 and y0.

Assumptions

▶ u0 is the unique solution to P0(y0),
▶ φi ∈ L2(R2) ∩ C 1

b (R
2) for 1 ⩽ i ⩽ M.

What can we say about the convergence of the Ei ’s?



20 / 37Stability analysis - the setting

u0 u(n) U
(t)
n , t ∈ R

We know that
▶ For each λ > 0, each y = y0 + w , there is a solution to Pλ(y) of the form

u =
∑k

i=1 ai1Ei and k = k(λ,w) ⩽ M.
▶ Same for λ = 0 and y0.

Proposition ([Chambolle et al., 2016, Iglesias et al., 2018])

If λn → 0, ∥wn∥
λn

⩽
√

π
2∥Φ∗∥ + source cond. then (up to extr.) un → u0 strictly in BV(R2)

and for a.e. t ∈ R, ∂U(t)
n

Hausdorff−−−−−−−→ ∂U
(t)
0 with U(t) =

{
{u ⩾ t} if t ⩾ 0

{u ⩽ t} otherwise.



21 / 37Using the dual problem to identify the face containing the solution

▶ Let u be a solution to Pλ(y) and p be the solution to the dual problem
Dλ(y)

▶ Then the optimality condition yields

Φ∗p ∈ ∂TV(u).

In other words,

u

TV(u)
∈
(
argmaxv∈CBV

∫
R2
(Φ∗p)u

)
.

▶ Equivalently, the level sets of u must solve a geometric variational problem
defined by p, known as the prescribed curvature problem.

(and similarly for P0(y0) and D0(y0)).



22 / 37The prescribed curvature problem

min
E⊆R2,

|E |<+∞

P(E)−
∫
E

η (Q(η))

Let ηλ,y
def.
= Φ∗pλ,y where pλ,y is the unique solution to Dλ(y).

▶ ∀t > 0, {uλ,y ⩾ t} solves Q(ηλ,y ).
▶ ∀t < 0, {uλ,y ⩽ t} solves Q(−ηλ,y ).
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min
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|E |<+∞

P(E)−
∫
E
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def.
= Φ∗pλ,y where pλ,y is the unique solution to Dλ(y).

▶ ∀t > 0, {uλ,y ⩾ t} solves Q(ηλ,y ).
▶ ∀t < 0, {uλ,y ⩽ t} solves Q(−ηλ,y ).

Let η0,y0
def.
= Φ∗p0,y0 where p0,y0 is the solution to D0(y0) with minimal norm.

▶ ∀t > 0, {u0 ⩾ t} solves Q(η0,y0).
▶ ∀t < 0, {u0 ⩽ t} solves Q(−η0,y0).

Convergence of the curvature functionals

If λ(n) → 0 and
∥∥∥w (n)

∥∥∥ /λ(n) → 0, then ηλ(n),y (n) → η0,y0 in L2(R2) and C 1
b (R2).



23 / 37Regularity results for the prescribed curvature problem

∂E

∂En

ϕn νE

Adapting results from [Ambrosio 2010, Maggi 2012...], we have:

Proposition (Regularity of the boundary)

If η ∈ C 1
b (R

2), any solution E to Q(η) is of class C 3.

Proposition (Normal deformation)

Assume that ηn → η in L2(R2) and C 1
b (R

2).
Then, for every ε > 0, there exists n0 such that for every
n ⩾ n0, every solution of Q(ηn) satisfies

∂En = (Id + ψnνE )(∂E)

for some solution E of Q(η) and ∥ψn∥C2(∂E) ⩽ ε.
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n ⩾ n0, every solution of Q(ηn) satisfies

∂En = (Id + ψnνE )(∂E)

for some solution E of Q(η) and ∥ψn∥C2(∂E) ⩽ ε.

J(F ) = P(F )−
∫
F η

ε

Jn(F ) = P(F )−
∫
F ηn

[ ]

ε

[ ]
EEn



24 / 37Second order shape derivatives

∂E

∂En

ϕn νE

J(E)
def.
= P(E)−

∫
E
η

Introduce the functional jE : W1,∞(∂E) → R
ψ 7→ J(Eψ)

with

∂Eψ = (Id + ψ νE )(∂E), and look at its derivatives j ′′E (ψ), j
′′
E (ψ)

(see [Henrot & Pierre 2018]). . .

Definition

A minimizer E of J is strictly stable if ∀ψ ∈ H1(∂E), j ′′E (0)[ψ,ψ] > 0.

Proposition

If ηn → η in L2(R2) and C 1
b (R

2), and if E is a strictly stable minimizer of J, there
exists ε > 0 such that for n large enough, there is at most one ψn s.t. ∥ψn∥C2(∂E) ⩽ ε

and Eψn is a minimizer of Jn.

[ ]

ε

[ ]

ε

[ ]

ε

Jn

J
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25 / 37Support recovery

Theorem

Let u0 =
∑k

i=1 ai1Ei be a k-simple function and assume that
▶ (source condition) there exists η ∈ ∂TV (u0) ∩ ImΦ∗,
▶ each Ei is a strictly stable solution to PC (sign(ai )η0),
▶ there is no other simple set solution to PC (sign(ai )η0),
▶ {Φ1E1 , . . . ,Φ1Ek } has full rank.

Then, if λ ⩽ λ0 and ∥w∥ /λ ⩽ α,

u =
k∑

i=1

ai1Ei ,

and for (λ,w) → (0, 0)
▶ ai → a0,i ,
▶ ∂Ei = (Id + ψνE )(∂E) and ∥ψ∥C2(∂E) → 0.

u0 uλ,w
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27 / 37Numerical resolution

Original

TV min with
standard scheme

Illustration from [Tabti et al.’17]



27 / 37Numerical resolution

Main issues with standard scheme:
▶ Blur,
▶ Anisotropy,
▶ Slow convergence with indicators of sets.

Many proposed schemes for total variation minimization on a grid have been
proposed [Chambolle et al.’11, Abergel & Moisan’17, Tabti et al.’17,
Condat’17, Chambolle & Pock’20..]

Goal
Exploit the structure of the solutions to design an "off-the-grid" algorithm, to
produce
▶ Sharp edges
▶ Isotropic results



28 / 37The Frank-Wolfe algorithm

Goal: Minimize a convex differentiable function f on a compact convex set
D ⊂ E

Algorithm (Frank-Wolfe/Conditional gradient)

For all k ∈ N, iterate

1. Linear minimization:
sk ∈ argmins∈D f (xk) + df (xk)[s − xk ]

2. Line search: xk+1 ∈ argminx∈[xk ,sk ]
f (x)
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]

Remarks:
▶ If E is a Banach space and df is Lipschitz, f (xk)−minD f = O

( 1
k

)
.

▶ Minimization of a linear form: OK if we can handle the extreme points of
D.

▶ In step 2, one may choose xk+1 ∈ D with f (xk+1) ⩽ minx∈[xk ,sk ] f (x)
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29 / 37Frank-Wolfe for Total Variation recovery

Goal: min
u∈L2(R2)

Ψ(u)
def.
= λ

∫
|Du|+ 1

2
∥Φu − y∥2

H

Differentiable? Constraint convex set D?

Trick: work with the epigraph (inspired from [Harchaoui’15])

min
(t,u)∈R×L2(R2)

λt +
1
2
∥Φu − y∥2

H s.t. λ

∫
|Du| ⩽ t ⩽ 1/2 ∥y∥2

H

M(X)
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29 / 37Frank-Wolfe for Total Variation recovery

Algorithm (Sliding Frank-Wolfe for Total Variation Recovery)

For all k ∈ N, iterate

1. Minimization:

Set η[k] def.
= 1

λ
Φ∗(y − Φu[k]) and find E [k]

∗ ∈ argmaxE⊆R2 ±
∫
E
η[k]

P(E)

2. If
∣∣∣∣ ∫E η[k]P(E)

∣∣∣∣ = 1 then stop.

Otherwise,
▶ Update the support

Sk+1/2 =
{
E

[k]
1 , . . . ,E

[k]
Nk
,E k

∗

}
def.
=

{
E

[k+1/2]
1 , . . . ,E

[k+1/2]
Nk+1

}
▶ Find the amplitude (discrete LASSO):

ak+1/2 ∈ argmin
a∈RNk+1

λ
∑
i

aiP(E
[k+1/2]
i ) +

1
2

∥∥∥∥∥∑
i

aiΦ1E
[k+1/2]
i

− y

∥∥∥∥∥
2

H
▶ Non-convex update of the positions and amplitudes (gradient descent)

({a[k+1]
i }, {E [k+1]

i }) ∈ descent
(a,E)

∑
i

aiP(E
[k+1/2]
i ) +

1
2

∥∥∥∥∥∑
i

aiΦ1E
[k+1/2]
i

− y

∥∥∥∥∥
2

H





30 / 37Solving the Cheeger problem

Linear minimization step:

argmaxE⊆R2 ±
∫
E
η[k]

P(E)

▶ There is a solution which is simply connected
▶ Resolution using polygonal curve evolution
▶ Initialization with the output some proximal algorithm on a rough grid

([Carlier et al.’09])

Weight ηk Solution on a grid Level set
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Unkown function u∗ Observation y = Φu∗ + n
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[1]
∗ = argminE

∫
E η
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u[1] = descent (a,E)(Ψ(a1E ))

u[2] = descent (a,E)(Ψ(a11E1 + a21E2))

Weight η[3] = 1
λ
Φ∗(y − Φu[2])
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u[1] = descent (a,E)(Ψ(a1E ))

u[2] = descent (a,E)(Ψ(a11E1 + a21E2))

u[3] = descent (a,E)
(
Ψ(

∑3
i=1 ai1Ei1))

)
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Unkown function u∗ Observation y = Φu∗ + n
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Cheeger set E
[1]
∗ = argmaxE

∫
E η

[1]

P(E)
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u[1] = descent (a,E) (Ψ(a1E )))

Cheeger set E
[2]
∗ = argmaxE −

∫
E η
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P(E)
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u[1] = descent (a,E) (Ψ(a1E )))

u[2] = descent (a,E) (Ψ(a11E1 + a21E2)))
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Jump set Solution Unkown u∗

Typical behavior of total variation regularization
▶ Loss of contrast,
▶ Rounding of the corners.



33 / 37Curvature

min
u

λ

∫
|Du|+ 1

2
∥Φu − y∥2



34 / 37Topology changes

▶ For the Cheeger problem, there is a simply connected set
▶ In the non-convex refinement step, topology changes might occur.
▶ Handling the topology changes is not mandatory for global convergence,

but it might yield better convergence / cleaner iterates.
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36 / 37Local convergence

▶ The global convergence is guaranteed by the convex framework
▶ In practice it can be better thanks to the shape optimization.

Can we bound the error? Prove the early convergence of the algorithm?
▶ Difficult to study
▶ Only partial results in the radial case, N = 3 or 4
▶ Ongoing work.



37 / 37Conclusion

▶ A representation of the solutions is given by elementary arguments of
convex analysis

▶ For some images, this representation is stable
▶ A gridless algorithm to take advantage of this structure

Thank you for your attention!

Faces and extreme points of convex sets for the resolution of inverse problems, V. Duval

Habilitation thesis (2022)

Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems, Y. De

Castro, V. Duval, R. Petit Journal of Mathematical Imaging and Vision (2022)

Exact recovery of the support of piecewise constant images via total variation
regularization, Y. De Castro, V. Duval, R. Petit arXiv preprint: arxiv:2307.03709 (2023)
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u0 y0 + w approx. of uλ,w

u0 y0 + w approx. of
uλ,w
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