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Super-resolution of point sources 3/ 37

The signal we want to recover is a superposition of point sources,

N
mo = E ag,,-5xo,,..
i=1

Many different methods
» Prony [Prony 1795, Kunis et al. '16, Sauer '17...]
» MUSIC [Schmidt 1986, Liao & Fannjiang '14...],
» ESPRIT [Kailath 1990, Li & Liao '20...]
» Matrix pencil [Hua 1988, Sarkar & Peirera 1995, Liu & Ammari '22...] ,
>

The Beurling LASSO (BLASSO) [Bredies & Pikkarainen'13, Azais & De Castro '14,
Candés & Fernandez-Granda'14]

whin Im[ () st ®dm=y. (Po(y))

see the review [Laville et al.’21].
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see the review [Laville et al.’21].



Robustness of the support ays7

Assume that

> the unknown is mo = SV, 30,i0xq ;5
» the observation is y = ®mg + w, with w some noise.

Theorem (D.-Peyré 2015)

If some “non-degeneracy” assumption holds, there exists, a« > 0, A\g > 0 such that for
0< A< Ao and ||wly, < ad,

> the solution m(y , to Px(y + w) is unique and has exactly N spikes,
mo\w) = Z,N:1 3,‘(/\, W)‘sx,-()\,w)r
> the mapping (\, w) — (a, x) is €.

21 s .
l 0

No Support recovery “Support recovery”



Robustness of the support ays7

Assume that

> the unknown is mo = SV, 30,i0xq ;5
» the observation is y = ®mg + w, with w some noise.

Theorem (D.-Peyré 2015)

If some “non-degeneracy” assumption holds, there exists, a« > 0, A\g > 0 such that for
0< A< Ao and ||wly, < ad,

> the solution m(y , to Px(y + w) is unique and has exactly N spikes,
Movw) = Sor1 ai(A W) (aw)»
> the mapping (\, w) — (a, x) is €.

The non-degeneracy holds [Poon et al. 2021] if :

> The kernel K(x,y) ot (Pdx, PS,) is smooth and decays sufficiently as
d(x,y) /,
» The locations xo,1, ..., Xo,n Of the spikes are sufficiently separated.

See also the non-negative case [Denoyelle et al.’16, Poon & Peyré'19, D.'20...] and
other partly smooth or mirror-stratifiable regularizations [Vaiter et al."15, Fadili et
al.’18...].



Algorithms

Estimated Signal, iteration: 1
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1.0

0.8 0.03
0.6
0.4

0.01
0.2
0.0 0.00

0.0 0.2 0.4 0.6 0.8 1.0

(Exp. by Q. Denoyelle)

Frank-Wolfe with local refinement steps[Bredies & Pikkarainen’13, Boyd et al.'15,

Denoyelle et al.'18]

> Greedy algorithms
» Non-convex refinement steps (exploits the continuous nature of the

problem)

> Yet, global convergence guarantees (convex optimization)



Super-resolution of piecewise constant images 6/ 37

The signal we want to recover is piecewise constant,

N
Up = E ao,,-]lEO’,..
i=1

where JEy ; is "not too oscillating”.

We want to reconstruct cartoon images [Meyer'01, Aujol et al.’05....]



Summary 7737

1. Setting



An Inverse Problem 8/ 37

Unknown image up € L*(R?)



An Inverse Problem 8/ 37

Unknown image up € L*(R?) Observations yo = ®ug € RV

We assume that

du ( /R 2 u(x)go,-(x)dx)KKM,

IS

with {@/}y C L2(R2).



An Inverse Problem 8/ 37

Unknown image up € L*(R?) Observations yo = dup € RM

We assume that

ou Lt ( /R . u(x)go,-(x)dx)KKM,

IS

with {pi}1¥; C L3(R?).

Noisy observations y = yo + w



An Inverse Problem

Unknown image up € L*(R?)

We assume that

outt ([ woplaax) |

IS

with {@/}y C L2(R2).

Recover ug from y.

Noisy observations y = yo + w

8 /37



The total variation of an image o /37

The total (gradient) variation of u is

/ |Du| = sup {/ u(x)divz(x)dx ; z € €°(R?), ||z]|, < 1}
R2 R2

:/ |Vu(x)|dx if uis smooth.
]RZ

> If u=1g with £ C R? of class ¢, then [, |D1g| = H'(OE) = P(E).

> More generally, if E C R?, we define its perimeter as P(E) et Jg2 |D1LE|.



Variational approach 10 / 37

Following [Rudin et al.'92, Chambolle & Lions '97,...], we consider the problems

> (noiseless setting, yo = ®uo)

min /|Du| s.c. du=y (Po(y0))
R2

u€L2(R2)

> (noisy setting, y = yo + w)

. 1
min, [ | 10ul+ 5 [ou=yI? (PA(»))
R2

uel?(R2)

solution (high )
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2. What is the structure of the solutions?



A representer theorem for Total Variation Image Recovery 12 /37

Theorem ([BCCDGW '18, Bredies & Carioni'18])

There is a solution in argmin Px(y) (resp. argmin Po(y0)) of the form

r
u = E aj]lE‘..
i=1

with r < M and each E; a simple set.

The simple sets are the “simply connected” sets in
the measure theoretic sense.



A representer theorem for Total Variation Image Recovery 12 /37

Theorem ([BCCDGW '18, Bredies & Carioni'18])

There is a solution in argmin Px(y) (resp. argmin Po(y0)) of the form

r
u = E 3,‘][5[..
i=1

with r < M and each E; a simple set.

The simple sets are the “simply connected” sets in
the measure theoretic sense.

Idea of proof:
> Each extreme point of argmin P belongs to a face of dimension at most
M—1of {u€l®; [.,|Du|l <t} where t = TV(u).
» Use Carathéodory's theorem together with

Theorem ([Fleming 1957, Ambrosio et al.'01])

The extreme points of {u eL?: fRZ |Du| < 1} are the functions of the form
u= +1g/P(E), where E is a simple set.




Representation of the solutions 13/ 37

The extreme points of argmin(P) are sums of at most M indicators of simple
sets,

M
u= E a,-]IE,..
i=1

TV regularization promotes cartoon images



Representation of the solutions

The extreme points of argmin(P) are sums of at most M indicators of simple
sets,

M
u= E a,-]lE,..
i=1

Measurement functions ¢;
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The extreme points of argmin(P) are sums of at most M indicators of simple

sets,
M
u= Z a,-]IE,..

i=1
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10000 ]
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-13.4 ‘ -8.3 ‘ 0 4.0
Solution to Po(yo) (left) and its histogram (right)



Representation of the solutions 13/ 37

The extreme points of argmin(P) are sums of at most M indicators of simple

sets,
M
u= Z a,-]IE,..

i=1
25000 T
20000 q
15000 q
10000 ]
5000 1

-13.4 ‘ -8.3 ‘ 0 4.0
Solution to Po(yo) (left) and its histogram (right)

Why M nonzero values and not 2 — 1 ??



Understanding the faces of the TV unit ball 14 /37
Let F be a (linearly closed) face of

Cov =& {ueLz(RZ); / | Dul <1}.
R2

What can we say about v € F, if F has dimension k ?

15 See [Bach 2009, Fujishige 2005] for submodular functions on a finite graph. But,
in our case

» (Cpv is not a polyhedron,

> some faces are not exposed.



Finite-dimensional faces 15/ 37

Let F be a k-dimensional face of Cgy {ue 3(R?); [i.|Dul <1}

Theorem (D.'22)

> F is a polytope (finite number of extreme points)

> Every u € F takes at most k + 1 nonzero values.

» There is a partition {H;}1<i<k+2 of R? with H; indecomposable, such that
every u € F is constant on each H;,

k+1

u= Z t,']lH‘.
i=1




Finite-dimensional faces 15/ 37

Let F be a k-dimensional face of Cgy {ue 3(R?); [r.|Dul <1}

Theorem (D.'22)
> F is a polytope (finite number of extreme points)
> Every u € F takes at most k + 1 nonzero values.

> There is a partition {H;}1<i<k+2 of R? with H; indecomposable, such that
every u € F is constant on each H;,

k+1

u= Z t,']lH’.
i=1

[ 1\
N 4

In fact, almost every u in F takes exactly k + 1 nonzero values.
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m

~— PO ) -

Generic 2-face of Cpy.



What about exposed faces? 17/ 37

» An exposed face of Cgy is a set of the form

F = argmaX,c ¢, /mz un

given some function n € L*(R?).
» The extreme points are of the form v = +1¢/P(E), where

Ee (argmaxfemz %) (resP' - F{(Eg))

(generalized Cheeger problem)
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What about exposed faces? 17/ 37

» An exposed face of Cgy is a set of the form

F = argmaX,c ¢, /mz un

given some function n € L*(R?).
» The extreme points are of the form v = +1¢/P(E), where

B fm)

Ee (argmaxfemz %) (reSp' P(E)

(generalized Cheeger problem)
> If n € L2(R?) N %3 (R?), then E is a set of class €°.

0.02
0.01
0.01

0.00 10.00

-0.01
-0.01
-0.02




Faces exposed by ‘Kbl functions 18 / 37

%

m

~— PO ) -

Generic 2-face of Cpy.



Faces exposed by (fbl functions 18 / 37

A 2-face exposed by some n € L?(R?) N 6} (R?)

A k-face exposed by some 7 € L*(R?) N %5 (R?) is a simplex,

k+1

VueF, u=) alg.
i=1

and this decomposition is unique.




Faces exposed by (ﬁbl functions 18 / 37

A 2-face exposed by some 7 € L2(R?) N 6} (R?)

Definition

A k-simple function is a function of the form

k
u = E a,-]lE,.
i=1

where the E;'s are €* and OE; N JE; = () for i # j.




Summary 10 / 37

3. Is that structure stable?



Stability analysis - the setting 20 / 37

. 2
uerz]gl(r]}gz)/ | Dul| + ||<1>u—y|| (PA(y))
i D .c. bu= P
ueanzl(rﬂez)/Rz [Du| s.c. du=yo (Po(y0))

Proposition ([Hofmann et al., 2007])

If A" — 0 and ||w(")||2 /A 5 0, every sequence u(™) of solutions to P ) (y(™M) has
cluster points (in the weak L? topology), each of which is a solution to Po(yo).




Stability analysis - the setting 20 / 37

. 1 2
Du| + — ||[du — P
ueanZI(rﬂkz)/l;{z |Dul 2) 1P =yl (PA))
mi D .c. du=
uELzl&z)Az |Du| s.c u=yo (Po(y0))

We know that
> For each A\ > 0, each y = yp + w, there is a solution to Py(y) of the form
u= Zf-;l ajlg and k = k(A w) < M.
> Same for A =0 and yp.
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. 2
uerz]gl(r]}gz)/ | Dul| + ||<1>u—y|| (PA(y))
i D .c. bu= P
ueTzl(rﬂez)/Rz [Du| s.c. du=yo (Po(y0))

We know that
> For each A\ > 0, each y = yp + w, there is a solution to Py(y) of the form
u= Z:'(:l ajlg and k = k(A,w) < M
> Same for A =0 and yp.

> up is the unique solution to Po(yo),
> o € 2(R?) N %L (R?) for 1 <i < M.

What can we say about the convergence of the E;'s?



Stability analysis - the setting 20 / 37

uo u(n U, ter
We know that

> For each A > 0, each y = yp + w, there is a solution to Py(y) of the form
u= Zf:l ajlg and k = k(A w) < M.
> Same for A =0 and yp.

PrOpOSition ([Chambolle et al., 2016, Iglesias et al., 2018])

If X, — 0, ”;”’;” < ZH\{’EH + source cond. then (up to extr.) u, — ug strictly in BV(R?)

Hausdorff
B

and for a.e. t € R, BU,(,t) BUgt) with U = {




Using the dual problem to identify the face containing the solutiona:, s

> Let u be a solution to Px(y) and p be the solution to the dual problem
Da(y)
» Then the optimality condition yields

®*p € HTV(u).

In other words,

u *
T™V(0) € <argma><vecBV /nzaz(d) p)u) .

» Equivalently, the level sets of u must solve a geometric variational problem
defined by p, known as the prescribed curvature problem.

(and similarly for Po(yo) and Do(y0)).



The prescribed curvature problem 22 /37

0.02

0.01
. 0.01
Engqllkr;, P(E) — /ET] (Q(n) 0.00 0.00
|E|<+o0 ‘ 001 . o

-0.02

Let 7,y et ®*py,, where py,, is the unique solution to Dx(y).
> Vit >0, {ur, >t} solves Q(nx,y).
> Vi <0, {ur, <t} solves Q(—nn,y).



The prescribed curvature problem 22/ 37

0.02
0.01
. 0.01
min P(E) —
ECRZ?, ( ) /E77 (Q(n)) 0.00 10.00
|El<+oo ‘ m ‘ 001

Let 7,y dof: ®*py,, where py,, is the unique solution to Dx(y).
> YVt >0, {uxr, =t} solves Q(nx,y).
> Vit <0, {ux, <t} solves Q(—nx,y).
Let 70,y def ®*po,y, Where po,y, is the solution to Do(yo) with minimal norm.
> Vit >0, {uo >t} solves Q(no,y,).
> Vit <0, {uo < t} solves Q(—7po,y0)-
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Let 7,y dof: ®*py,, where py,, is the unique solution to Dx(y).
> YVt >0, {uxr, =t} solves Q(nx,y).
> Vit <0, {ux, <t} solves Q(—nx,y).
Let 70,y def ®*po,y, Where po,y, is the solution to Do(yo) with minimal norm.
> Vit >0, {uo >t} solves Q(no,y,).
> Vit <0, {uo < t} solves Q(—7po,y0)-



The prescribed curvature problem 22/ 37

0.02
0.01
0.01
Efg]g; P(E)_/En () @ Uom 0.00
|E|<+oo ‘ 0.01

-0.02

Let 7, def ®*py,, where py,, is the unique solution to Dx(y).
> Vt >0, {ur, >t} solves Q(nx,).
> YVt <0, {ur, < t} solves Q(—ma,).
Let 70,4 def ®*po,y, Where po,y, is the solution to Do(yo) with minimal norm.
> YVt >0, {uo >t} solves Q(no,y,).
> Vt <0, {uo <t} solves Q(—1o,y0)-

Convergence of the curvature functionals

If A = 0 and ‘ w® || /X = 0, then nyi e — 10 in L2(R?) and €2 (R?).




Regularity results for the prescribed curvature problem 23/ 37

Adapting results from [Ambrosio 2010, Maggi 2012...], we have:

Proposition (Regularity of the boundary)

If n € 6} (R?), any solution E to Q(n) is of class 3.

Proposition (Normal deformation)

Assume that 7, — 7 in L2(R2) and %} (R?).
Then, for every € > 0, there exists ng such that for every
n > ng, every solution of Q(n,) satisfies

OEn = (Id + ¢nve)(OE)

for some solution E of Q(n) and ||¢nllc2(ag) < &




Regularity results for the prescribed curvature problem 23/ 37

Adapting results from [Ambrosio 2010, Maggi 2012...], we have:

Proposition (Regularity of the boundary)

If n € €} (R?), any solution E to O(n) is of class 3.

Proposition (Normal deformation)

Assume that 7, — 7 in L2(R2) and %} (R?).
Then, for every € > 0, there exists ng such that for every
n > ng, every solution of Q(n,) satisfies

OE, = (Id + o) (9E)

for some solution E of Q(n) and ||¢n||cz(65) <e

J(F) = P(F) = [

In(F) = P(F) = Jgmn




Second order shape derivatives

J(E) & p(E) - /E n

Introduce the functional jg : WH°(9E) — R with

¥ = J(Ey)
OEy, = (Id + v vg)(OE), and look at its derivatives jZ(v), j£(¥)
(see [Henrot & Pierre 2018]). ..

Definition

A minimizer E of J is strictly stable if Vi € H(OE), jg(0)[¥,v] > 0.




Second order shape derivatives 24 / 37

J(E) & p(E) - /E 7

Introduce the functional jg : WH°(9E) — R with

¥ = J(Ey)
OEy, = (Id + v vg)(OE), and look at its derivatives jZ(v), j£(¥)
(see [Henrot & Pierre 2018]). ..

Definition
A minimizer E of J is strictly stable if Vi € H(OE), jg(0)[¥,v] > 0.

Proposition

If n, — 7 in L2(R?) and %”I}(Rz), and if E is a strictly stable minimizer of J, there
exists € > 0 such that for n large enough, there is at most one 1, s.t. ||1[),,||C2(0E) <e
and Ey, is a minimizer of J,.

In




Support recovery

25 / 37

Theorem

Let up = Zf-‘:l ajlg, be a k-simple function and assume that
> (source condition) there exists n € TV (ug) N Im *,
» each E; is a strictly stable solution to PC (sign(a;)no),
» there is no other simple set solution to PC (sign(a;)no).
> {®1g,...,P1g } has full rank.

Then, if A < Ao and ||w|| /A < o,

k
u= E ai]IE,'v
=il

and for (A, w) — (0,0)
> a; — ag,j,

> OF; = (Id + vve)(9E) and [[¢] c2(og) — 0.

DS P| L




Summary 26 /37

4. Algorithm and numerical results



Numerical resolution

Original

TV min with
standard scheme

lllustration from [Tabti et al."17]



Numerical resolution 27/ 37

Main issues with standard scheme:

> Blur,

> Anisotropy,

» Slow convergence with indicators of sets.

Many proposed schemes for total variation minimization on a grid have been
proposed [Chambolle et al."11, Abergel & Moisan'17, Tabti et al.'17,
Condat'17, Chambolle & Pock'20..]

Exploit the structure of the solutions to design an "off-the-grid" algorithm, to
produce

» Sharp edges

» |sotropic results




28 / 37

The Frank-Wolfe algorithm

Goal: Minimize a convex differentiable function f on a compact convex set
DCE

Algorithm (Frank-Wolfe/Conditional gradient)

For all k € N, iterate

1. Linear minimization:
sk € argmingcp f(xx) + df (xx)[s — xi]

2. Line search: xci1 € argmin, ¢, .1 f(x)

[
=<
[
v
2
0
S~
hs
T
0
=
=

Remarks:
> If E is a Banach space and df is Lipschitz, f(x) — minp f = O (%).
» Minimization of a linear form: OK if we can handle the extreme points of
D.
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The Frank-Wolfe algorithm

Goal: Minimize a convex differentiable function f on a compact convex set
DCE

Algorithm (Frank-Wolfe/Conditional gradient)

For all k € N, iterate

1. Linear minimization:
sk € argmingcp f(xx) + df (xx)[s — xi]

2. Line search: xci1 € argmin, ¢, .1 f(x)

[
=<
[
v
2
0
S~
hs
T
0
=
=

Remarks:
> If E is a Banach space and df is Lipschitz, f(x) — minp f = O (%).
» Minimization of a linear form: OK if we can handle the extreme points of
D.
> In step 2, one may choose xx11 € D with f(xkr1) < mineepy, 5] F(x)



Frank-Wolfe for Total Variation recovery 20 /37

Goal: min,, V() "é"A/|Du|+ % ou— 2,

u€l2(R2

Differentiable? Constraint convex set D?



Frank-Wolfe for Total Variation recovery 20 / 37

. . def. 1 2
Goal: uerpzl(%z)W(u) = )\/ |Du| + 5 |ou - yll5,

Differentiable? Constraint convex set D?

Trick: work with the epigraph (inspired from [Harchaoui'15])

. 1 2 2
i e S leu—ylE st A [ 1ou < e</2]y



Frank-Wolfe for Total Variation recovery 20 /37

Algorithm (Sliding Frank-Wolfe for Total Variation Recovery)

For all k € N, iterate
1. Minimization:
[k]

Set ¥ = 1o*(y — dull) and find £ € argmaxpcpe + £ P(E)

If fg(z.) = 1 then stop.
Otherwise,
> Update the support
Sk+1/2 — {E{k]7 L EI[\Z(]7 Ef} def. {E{k+1/2] glkt1/2]

En i1
> Find the amplitude (discrete LASSO):
2

ak*1/2 ¢ argmin )\Za P E[Hl/z]) +
aeRNk+1 i

Z ai¢]lE[k+1/2] -y
i ! H
> Non-convex update of the positions and amplitudes (gradient descent)

(a0, {E1)) € descent (Z“’PE[“””H 2 ai®lgpara —

2)
H/ )




Solving the Cheeger problem 30/ 37

Linear minimization step:

St
P(E)

argmaxgcpz £

» There is a solution which is simply connected
» Resolution using polygonal curve evolution

» |nitialization with the output some proximal algorithm on a rough grid
([Carlier et al.’09])

~y
e o

Weight 7 Solution on a grid Level set
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2 Vo

Unkown function u* Observation y = du* +n
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Weight nltl =

0.5
0.4
0.3
0.2
0.1
0.0
—0.1
-0.2
—0.3
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[1]
Cheeger set Elll = argming fﬁ(—nE)
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ultl = descent (a, E)(W(alg))
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ultl = descent (a, E)(W(alg))

0.300
0.225
0.150
0.075
0.000
—0.075
—0.150
—0.225
—0.300

Weight /@ = Lo*(y — dulll)

1
X
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ultl = descent (a, E)(W(alEg))

12]
Cheeger set E® = argmaxg i%



Example 31/ 37

ultl = descent (a, E)(W(alg))

ul? = descent (a, E)(W(a1lg, + a2lg,))



Example

ull = descent (a, E)(V(ale))

ul? = descent (a, E)(W(a1lg, + a2lg,))

31 /37

Weight nP¥l = 1% (y — dul?)

0.07:
0.00¢
—0.0
—0.1
—0.2
—0.3
—0.3
—0.4
—0.5
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131
ul™! = descent (a, E)(W(alEg)) Cheeger set EP = argmaxg :I:%

ul? = descent (a, E)(W(a1lg, + a2lg,))
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ul'l = descent (a, E)(W(alg)) uPl = descent (a, E) (V(22, ailea))

ul? = descent (a, E)(W(a1lg, + a2lg,))



Another example 32/ 37

Unkown function u* Observation y = du* + n



Another example

Weight ol = 1

0.042
0.036
0.030
0.024
0.018
0.012
0.006
0.000

32 /37



Another example 32/ 37

o2l

Cheeger set E,,[ll = argmaxg %




Another example 32/ 37

ut = descent (a, E) (V(alg)))




Another example 32/ 37

ut = descent (a, E) (V(alg)))

0.005
0.000
. —0.005
—0.010
—0.015
—0.020
—0.025
—0.030
—0.035
—0.040

Weight n = To%(y — dulll)
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ut = descent (a, E) (V(alg)))

e

Cheeger set E£2] = argmaxg —%—E)



Another example 32/ 37

ut = descent (a, E) (V(alg)))

ul? = descent (a, E) (V(a1lg, + a21g,)))



Another example 32/ 37

Jump set Solution Unkown wu.

Typical behavior of total variation regularization
» Loss of contrast,

» Rounding of the corners.



Curvature

min,\/|Du| + % [du— y|?

33 / 37

A=1.10"
A=5.10"2
A=1.1072
A=1.10""*

ground truth



Topology changes 38/ 37
» For the Cheeger problem, there is a simply connected set

» In the non-convex refinement step, topology changes might occur.

» Handling the topology changes is not mandatory for global convergence,
but it might yield better convergence / cleaner iterates.

(a) (b) () (d)
(e) (f) (8) (h)
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» For the Cheeger problem, there is a simply connected set
» In the non-convex refinement step, topology changes might occur.

» Handling the topology changes is not mandatory for global convergence,
but it might yield better convergence / cleaner iterates.
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Unkown function u* Observation y = ®u* +n Reconstruction ul¥!
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Unkown function u* Observation y = du* + n Reconstruction ul!
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> The global convergence is guaranteed by the convex framework

» In practice it can be better thanks to the shape optimization.

Can we bound the error? Prove the early convergence of the algorithm?
» Difficult to study
» Only partial results in the radial case, N =3 or 4
» Ongoing work.
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Conclusion

> A representation of the solutions is given by elementary arguments of
convex analysis
> For some images, this representation is stable

> A gridless algorithm to take advantage of this structure

Thank you for your attention!
> Faces and extreme points of convex sets for the resolution of inverse problems, V. Duval
Habilitation thesis (2022)

> Towards Off-the-grid Algorithms for Total Variation Regularized Inverse Problems, Y. De
Castro, V. Duval, R. Petit Journal of Mathematical Imaging and Vision (2022)

> Exact recovery of the support of piecewise constant images via total variation
regularization, Y. De Castro, V. Duval, R. Petit arXiv preprint: arxiv:2307.03709 (2023)
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