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ABSTRACT. This note contains the material I presented at the summer school on optimal transport,
TU Dortmund in 2023 and what I presented to the CEA-EDF-INRIA summer school about numerical
optimal transport in 2019. It is, on purpose, written at an elementary level, with almost no prerequisite
knowledge in optimal transport and the writing style is informal. All the methods presented hereafter
rely on convex optimization, so we give a basic introduction to convex analysis and optimization. We
discuss gradient flows in Wasserstein space after an introduction to the (infinite dimensional) geometry
of the Wasserstein space and the Benamou-Brenier formulation. We present the entropic regularization
of the Kantorovich formulation and present the now well known Sinkhorn algorithm, whose conver-
gence is proven in continuous setting with a simple proof. We prove the linear convergence rate of
this algorithm with respect to the Hilbert metric. The second numerical method we present use the
dynamical formulation of optimal transport proposed by Benamou and Brenier which is solvable via
non-smooth convex optimization methods.

1. INTRODUCTION

These notes1 are based on [Cuturi and Peyré, 2019] and most of the important references can be
found there. For the convergence of the Sinkhorn algorithm, the proof is inspired by the proof in
[Berman, 2017]. Most of the results on entropic regularization can be found in [Cuturi and Peyré, 2019].
The only point that differs from the usual litterature is a proof of the linear convergence of the
Sinkhorn algorithm in the continuous setting, which relies on the estimation of the L1 distance
between two Gibbs measures (see Theorem 7 and Lemma 8). The last results on Sinkhorn di-
vergence are based on [Feydy et al., 2018]. We briefly present the dynamical formulation of op-
timal transport, we refer to [Santambrogio, 2015] for more details. For the numerical methods
on the dynamical formulation, we rely on [Benamou and Brenier, 2000, Cuturi and Peyré, 2019,
Papadakis et al., 2014, Chizat et al., 2018]. We present the different formulations of unbalanced op-
timal transport, static and dynamic and conic in the particular case of the relative entropy as a
penalty for the marginal constraints (Wasserstein-Fisher-Rao and generalizations). We also present
the dynamic formulation of entropic regularization of OT and we present a corresponding formu-
lation in the case of the Wasserstein-Fisher-Rao metric.

2. ENTROPIC REGULARIZATION OF OPTIMAL TRANSPORT

The Kantorovich formulation of optimal transport aims at minimizing a linear function over the
simplex Sn,m of probability vectors on Rn×m defined by

(2.1) Sn,m = {πij ∈ Rn×m
+ :

n

∑
i=1

m

∑
j=1

πij = 1} .

Namely, denoting 〈·, ·〉 the L2 scalar product on Rn×m,

(2.2) OT(ρ1, ρ2) = min〈π(i, j), c(i, j)〉 such that ∑
j

πi,j = ρ1(i) and ∑
i

πi,j = ρ2(j) ∀i, j .

1I am thankful to Théo Dumont, who improved substantially the writing of this note.
1
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This linear programming problem has complexity O(N3) which is clearly infeasible for large N, N
being max(n, m). Moreover, as a linear programming problem the resulting cost OT(ρ1, ρ2) is not
differentiable (everywhere) with respect to ρ1, ρ2.

Entropic regularization provides us with an approximation of optimal transport, with lower compu-
tational complexity and easy implementation.

Entropic regularization, in its continuous formulation, can actually be traced back to the seminal
work of Schrödinger in the 20’s, and has been rediscovered several times in different contexts.
We refer to the book [Cuturi and Peyré, 2019] in which many historical references are cited. This
section is motivated by the introduction of entropic regularization for the above mentioned reasons
by Cuturi in [Cuturi, 2013]. In this paper, entropy penalty is added, as done in linear programming

(2.3) min
π∈Π(ρ1,ρ2)

〈π(i, j), c(i, j)〉 − ε Ent(π) ,

where we denoted the set of admissible couplings by

(2.4) Π(ρ1, ρ2)
def.
= {π ∈ Sn,m : ∑

j
πi,j = ρ1(i) and ∑

i
πi,j = ρ2(j)∀i, j} .

and the Shannon entropy, which is a strictly concave function

(2.5) Ent(π)
def.
= −∑

i,j
πi,j(log(πi,j)− 1) .

Therefore, problem (2.3) is strictly convex and by compactness of the simplex, there exists a unique
solution. Due to the fact that x log(x) has infinite positive slope at 0, this minimizer satisfies that
πi,j > 0, and one can apply the first order optimality condition with constraints (KKT conditions),
forming the Lagrangian associated with the problem

(2.6) L(π, λ1, λ2) = 〈π(i, j), c(i, j)〉 − ε Ent(π)− 〈λ1(i), ∑
j

πi,j − ρ1(i)〉 − 〈λ2(j), ∑
i

πi,j − ρ2(i)〉 ,

and we obtain taking variations

(2.7) c(i, j) + ε log(πi,j)− λ1(i)− λ2(j) = 0 .

This implies that the unique optimal coupling for entropic regularization is of the form

(2.8) πij = eλ1(i)+λ2(j)−c(i,j) = D1e−c(i,j)D2 ,

where D1, D2 denote the diagonal matrices formed by eλ1(i) and eλ2(j). In order to solve for λ1, λ2 or
equivalently, D1, D2, the marginal constraints give information on D1, D2. The problem now takes
a similar form to the matrix scaling problem,

Matrix Scaling Problem: Let A ∈ Rmn be a matrix with positive coefficients. Find D1, D2 two
positive diagonal matrices respectively in Rn2

and Rm2
, such that D1 AD2 is doubly stochastic, that is

sum along each row and each column is equal to 1.

First, solutions are non-unique since, if (D1, D2) is a solution, then so is (λD1, 1
λ D2) for every

positive real λ. This problem can be solved in a cheap way by a simple iterative algorithm, known
as Sinkhorn-Knopp algorithm, which simply alternates updating D1 and D2 in order to match the
marginal constraints. This algorithm takes the form, denoting by 1n the vector of size n filled with
the value 1. At iteration k, the algorithm consists in updating alternatively D1 and D2 via the
formula,
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(2.9) Sinkhorn algorithm:

{
Dk

1 = 1n./(ADk−1
2 )

Dk
2 = 1m./(AT Dk

1) ,

where we denoted ./ the coordinatewise division. The convergence of this algorithm has been
proven by Sinkhorn and Knopp. In our case, the corresponding iterations would take the form

(2.10)

{
Dk

1 = ρ1./(e−c/εDk−1
2 )

Dk
2 = ρ2./([e−c/ε]T Dk

1) .

However, to recast entropic optimal transport as a particular instance of bistochastic matrix scal-
ing, one simply replaces e−c/ε with diag(ρ1)e−c/ε diag(ρ2). Interestingly, it is easy to modify the
variational formulation in order to obtain this matrix in the optimality equation and this motivates
the following definition,

Definition 1 (Discrete Entropic OT).

(2.11) OTε(ρ1, ρ2)
def.
= min

π∈Π(ρ1,ρ2)
〈π(i, j), c(i, j)〉+ ε KL(π | ρ1 ⊗ ρ2) ,

where KL(ρ | µ) is the Kullback-Leibler divergence, or relative entropy between ρ and µ and it is
defined in the discrete case as

(2.12) KL(ρ | µ) def.
= ∑

i
ρ(i) (log(ρ(i)/µ(i))− 1) .

The main point of defining entropic regularization using mutual information is to define the
problem on the whole space of measures, in particular containing discrete and continuous mea-
sures.

Remark 1. A few remarks are in order:

• The Kullback-Leibler entropy is jointly convex as we will see below.
• Note that the regularization term is known as mutual information between two random variables

X, Y of respective law ρ1, ρ2 and joint distribution π.
• Mutual information is not convex in all of its arguments but for instance in (π, ρ1) or (π, ρ2).
• The argmin of problems (2.11) and (2.3) are the same. The formulation (2.3) can be rewritten as

using the KL(π | 1⊗ 1) and a simple calculation show that the argmin is independent of the choice
of the measures α, β in KL(π | α⊗ β). Of course, the value of the minimization problem is changing.
• If the cost c is nonnegative, OTε is nonnegative since mutual information is nonnegative.

As expected, the behaviour w.r.t large and small values of ε can be characterised.

Proposition 1 (Limit cases in ε). When ε goes to 0, the unique minimizer πε for OTε(α, β) converges to
the maximal entropy plan among the possible optimal transport plans for OT(α, β).

When ε goes to +∞, the unique minimizer πε converges to α⊗ β, i.e. the joint law encoding independence
of marginals.

Proof. We refer to the proof in [Cuturi and Peyré, 2019]. �

As is usual for an optimization problem, the nonuniqueness case is rare althgouh it obviously
happens in optimal transport: an example with sum of two Dirac masses can be easily built, for
instance the vertices of a square. A sufficient condition for uniqueness of the transport plan is the
case of Brenier’s theorem where one of the two marginals is assumed absolutely continuous w.r.t.
the Lebesgue measure. Nevertheless, the limit of the entropic plans converges to a unique solution
which can be considered intuitively as the most ”diffuse” solution.
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2.1. Convergence of Sinkhorn algorithm in the continuous setting. As recalled in Fenchel-Rockafellar
theorem 35, the supremum of the dual problem might not be attained. However, in standard op-
timal transport, existence of optimal potential can be proven by standard compactness arguments.
In this paragraph, we show that similar arguments go through.

Coordinate ascent algorithm on a function of two variables f (x, y) can be informally written as

yn+1 = arg max
y

f (xn, y)(2.13)

xn+1 = arg max
x

f (x, yn+1) .(2.14)

Sinkhorn algorithm is a coordinate ascent on the dual problem, which can be formulated as

Proposition 2 (Dual Problem). The dual problem reads supu,v D(u, v) where u, v ∈ C0(X) and

(2.15) D(u, v) = 〈u(x), α(x)〉+ 〈v(y), β(y)〉 − ε〈α⊗ β, e
u(x)+v(y)−c(x,y)

ε − 1〉 .

It is strictly convex w.r.t. each argument u and v and strictly convex w.r.t. u(x) + v(y). It is also Fréchet
differentiable for the (C0, ‖ · ‖∞) topology. Last, D(u, v) = D(u + C, v− C) for every constant C ∈ R. If
a maximizer exists, it is unique up to this invariance.

Proof. The strict convexity and smoothness follows from the strict convexity and smoothness of the
exponential (the functional D is the sum of linear terms and an exponential term which is smooth
w.r.t. its arguments in the (C0, ‖ · ‖∞) topology). By strict convexity, uk+1 = arg minu D(u, vk)
and vk+1 = arg minv D(uk+1, v) are uniquely defined. The invariance is immediate to check and
the strict convexity in u(x) + v(y) gives that if two maximizers exist, (u1, v1) and (u2, v2) then,
u1(x) + v1(y) = u2(x) + v2(y) which implies u1(x)− u2(x) = v2(y)− v1(y) and the existence of C
such that (u1, v1) = (u2 + C, v2 − C) follows. �

Proposition 3 (Sinkhorn algorithm on dual potentials). The maximization of D(u, v) w.r.t. each vari-
able can be made explicit, and the Sinkhorn algorithm is defined as

uk+1(x) = −ε log
(∫

X
e

vk(y)−c(x,y)
ε dβ(y)

)
(=: Sβ(vk))(2.16)

vk+1(y) = −ε log
(∫

X
e

uk+1(x)−c(x,y)
ε dα(x)

)
(=: Sα(uk+1)) .(2.17)

Moreover, the following properties hold

• D(uk, vk) ≤ D(uk+1, vk) ≤ D(uk+1, vk+1),
• The continuity modulus of uk+1, vk+1 is bounded by that of c(x, y).
• If vk − c (resp. uk+1 − c) is bounded by M on the support of β, then so is uk+1 (resp. vk+1).

Proof. We prove existence of maximizer by proving that there exists a critical point to the functional
coordinatewise. The first part of the proposition follows from writing the first-order necessary
condition, written as follows

(2.18) 1− eu(x)/ε
∫

X
e

v(y)−c(x,y)
ε dβ(y) = 0 for x α a.e.

which gives the definition of Sβ(v) (and by symmetry, the same result on Sα holds). Therefore,
Sβ(v) is the unique maximizer of u 7→ D(u, v).

By definition of ascent on each coordinate, the sequence of inequalities is obtained directly.

For the second point, remark that the derivative of log(∑i exp(xi)) w.r.t. xj is
exp(xj)

∑i exp(xi)
bounded

by 1. Therefore, x 7→ log
∫

X e
c(x,y)−v(y)

ε dβ(y) is L-Lipschitz where L is the Lipschitz constant of c,
and the modulus of continuity of uk+1, vk+1 is thus bounded by that of c. The last point is a simple
bound on the iterates. �
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Remark 2 (Link with standard optimal transport). The Sinkhorn algorithm computes iterates uk+1, vk+1
which are as smooth as its cost and the continuity modulus of the iterates is bounded. Thus, the situation
is close to the usual c-transform of optimal transport: starting from potentials u, v, one can replace v by u∗

while the dual value is non-decreasing. The c-transform being L-Lipschitz with a constant independent of
u, the maximization can thus be performed on the space of L-Lipschitz functions (which take the value 0 at
a given anchored point) which is compact by the Arzelà-Ascoli theorem. Therefore, proving the existence of
optimal potentials.

Proposition 4. The sequence (uk, vk) defined by the Sinkhorn algorithm converges in (C0(X), ‖ · ‖∞) to
the unique (up to a constant) couple of potentials (u, v) which maximize D.

Proof. First, shifting the potentials by an additive constant, one can replace the optimization set by
the couples (u, v) which have a uniformly bounded modulus of continuity and such that u(x0) = 0
for a given x0 ∈ X. The maximum of D is achieved at some couple (u∗, v∗) and this couple is
unique up to an additive constant as written in Proposition 2.

Then, since (uk+1, vk+1) are uniformly bounded and have uniformly bounded modulus of con-
tinuity, one can extract, by the Arzelà-Ascoli theorem, a converging subsequence in the corre-
sponding topology to (ũ, ṽ). By continuity of D and monotonicity of the sequence of values,
D(ũ, Sα(ũ)) ≤ D(Sβ ◦ Sα(ũ), Sα(ũ)) = D(ũ, Sα(ũ)), where S is the Sinkhorn iteration. Therefore,
the maximizer coordinatewise being unique, one has,

Sβ(ṽ) = ũ(2.19)

Sα(ũ) = ṽ .(2.20)

Formulas (2.19) (together with (2.18)) show that (ũ, ṽ) is a critical point of D, thus being the maxi-
mizer. �

In fact, a particularly important property used in the convergence proof is that the log-sum-exp
function, also called log cumulant is 1-Lipschitz.

Proposition 5. The LSE function log
∫

exp is convex (but not strictly) and 1-Lipschitz. Also, one has, for
α a probability measure whose support is not a singleton,

(2.21) ‖Sα(u1)− Sα(u2)‖◦,∞ ≤ κ‖u1 − u2‖◦,∞
where κ < 1 and where we define the norm in oscillation of f ,

(2.22) ‖ f ‖◦,∞
def.
=

1
2
(sup f − inf f ) = inf

a∈R
‖ f (x)− a‖∞,α .

where the sup, inf and sup norm are taken w.r.t. α. Sometimes, we use osc( f ) = (sup f − inf f ).2

Proof. The first part of the proposition is obvious and used in the proof of Proposition 3. More
precisely, the 1-Lipschitz property can be actually obtained by using

|Sα(u1)(x)− Sα(u2)(x)| =
∣∣∣∣∫ 1

0

d
dt

Sα(u2 + t(u1 − u2))dt
∣∣∣∣(2.23)

≤
∫ 1

0

∣∣∣∣∣∣
∫

X
(u1 − u2)

e
t(u1−u2)

ε∫
X e

t(u1−u2)
ε e

u2−c(x,·)
ε dα

e
u2−c(x,·)

ε dα

∣∣∣∣∣∣ dt(2.24)

≤ ‖u1 − u2‖∞ .(2.25)

The case of equality can happen if and only if u1 − u2 is α a.e. a constant. In such a case, u1 =
u2 + a, Sα(u1) = Sα(u2) + a. Therefore, it is natural to consider C0(X)/R, the space of continuous
functions up to an additive constant, which we endow with the norm defined in the proposition.
Note that such an approach only applies to measures α whose support is not restricted to a single

2This notation is often used in the literature of concentration inequalities.
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point (an obvious case for balanced optimal transport). Using the same arguments as above, one
has, for u1 6= u2

(2.26) ‖Sα(u1)− Sα(u2)‖◦,∞ ≤ ‖Sα(u1)− Sα(u2)‖∞ < ‖u1 − u2‖◦,∞
since the case of equality implies that u1 = u2. Refining the above inequality (2.25), one has

(2.27) |Sα(u1)(x)− Sα(u2)(x)| ≤ κ‖u1 − u2‖◦,∞ ,

where, κ is defined by optimization on the set

S def.
= { f of continuity modulus less than twice that of c, ‖ f ‖◦,∞ = ‖ f ‖∞}

of

(2.28) κ = sup
f∈S\{0}

sup
ν̃∈V

1
‖ f ‖∞

∫
X

f (x)dν̃(x) ,

where V def.
= {ν̃ = 1

Z eV dα : V ∈ 1
εS} and Z is the normalizing constant to make ν̃ a probability

measure. The supremum is attained by compactness of S and is strictly less than 1 (otherwise it
should be constant α a.e. equal to 0 since ‖ f ‖◦,∞ = ‖ f ‖∞). �

Theorem 6 (Linear convergence of Sinkhorn). The sequence (uk, vk) linearly converges to (u∗, v∗) for
the sup norm up to translation ‖ · ‖◦,∞.

Proof. The proof is a direct application of the previous property. Denote κ(α) and κ(β) the contrac-
tion constants of respectively Sα and Sβ, then,

(2.29) ‖Sβ ◦ Sα(u1)− Sβ ◦ Sα(u2)‖◦,∞ ≤ κ(α)κ(β)‖u1 − u2‖◦,∞ ,

therefore, the convergence is linear. �

Remark 3. The proof of the rate of convergence implies the proof of convergence. However, it is likely that the
arguments for the linear rate do not generalize in other situations such as multimarginal optimal transport,
whereas the existence part could adapt to such cases.

The contraction constant κ is not explicit in Proposition 5 and we now give a quantitative esti-
mate by a direct computational argument.

Proposition 7. One has κ(α) ≤ 1− e−
1
ε L diam(α), if c is L−Lipschitz and diam(α) is the diameter of the

support of α.

Proof. We first give an estimation of the oscillations of Sα( f ):

(2.30)
1
2
|Sα(u1)(y)− Sα(u2)(y)− Sα(u1)(x)− Sα(u2)(x)| ≤ 1

2

∣∣∣∣∫ 1

0
〈u1 − u2, νt,y − νt,x〉dt

∣∣∣∣ ,

where νt,z
def.
= 1

Z e
t(u1−u2)+u2−c(z,·)

ε dα (with Z the normalizing constant). We now use a the L∞, L1

bound and we note that the ‖u1 − u2‖0,∞ ≤ ‖u1 − u2‖∞. For the L1 bound on νt,y − νt,x, we use
Lemma 8. Thus , we get

(2.31) ‖Sα(u1)− Sα(u2)‖◦,∞ ≤ κ‖u1 − u2‖◦,∞ ,

where κ is the constant estimated in Lemma 8 below, for which the role of u − v is taken by
1
ε (c(x, ·)− c(y, ·)) and a trivial bound is ‖u− v‖◦,∞ ≤ 1

ε L diam(α). �

Lemma 8. Let u, v be two continuous functions on X and α be a probability measure and denote νu, νv the
Boltzmann measures associated with u, v, which are νu = 1

Zu
euα and νv = 1

Zv
evα then

(2.32) ‖νu − νv‖L1 ≤ 2(1− e−‖u−v‖◦,∞) = 2(1− e−
1
2 osc(u−v)) .
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Proof. Consider g a bounded function on X and define ψg(t) =
∫

X g etv+(1−t)u∫
X etv+(1−t)u dα

dα. Then, by

differentiation

(2.33) ψ′g(t) + ψv−u(t)ψg(t) = ψ(v−u)g(t) ,

and therefore

(2.34) e
∫ t

0 ψv−u(s)dsψg(t)− ψg(0) =
∫ t

0
ψ(v−u)g(s)e

∫ s
0 ψv−u(r)dr ds .

Observe that, since one can assume (the Boltzmann measures are defined up to an additive constant
on the function) that u− v is nonnegative,

|e
∫ t

0 ψu−v(s)dsψg(t)− ψg(0)| ≤ ‖g‖∞

∫ t

0
ψu−v(s)e

∫ s
0 ψu−v(r)dr ds

≤ ‖g‖∞

(
e
∫ t

0 ψu−v(s)ds − 1
)

where the last formula is obtained by direct integration. Now, by exchanging the role of u, v, only
two cases are possible: Whether ψg(1) ≥ ψg(0) ≥ 0 or ψg(1) ≥ 0 ≥ ψg(0). In the first case, one has

(2.35) |e
∫ t

0 ψu−v(s)ds(ψg(t)− ψg(0))| ≤ |e
∫ t

0 ψu−v(s)dsψg(t)− ψg(0)| ≤ ‖g‖∞

(
e
∫ t

0 ψu−v(s)ds − 1
)

.

In the second case, there exists t0 ∈ [0, 1] such that ψg(t0) = 0, and thus

|ψg(1)| ≤ ‖g‖∞

(
1− e−

∫ 1
t0

ψu−v(s)ds
)

|ψg(0)| ≤ ‖g‖∞

(
1− e−

∫ t0
0 ψu−v(s)ds

)
and therefore, by optimizing3 on the parameter t0, we obtain

(2.36) |ψg(1)− ψg(0)| ≤ |ψg(1)|+ |ψg(0)| ≤ 2‖g‖∞(1− e−
1
2
∫ 1

0 ψu−v(s)ds) .

Since ψu−v(t) ≤ 2‖u− v‖◦,∞, we get, in the two cases

(2.37) ‖νu − νv‖L1 ≤ 2(1− e−‖u−v‖◦,∞) .

�

Remark 4. In fact, the bound on ψu−v(t) is not sharp since, here again, |〈(u − v), νu−v〉| < ‖u − v‖∞
unless u − v = cste. In this case, this would imply that the cost is a constant function which is not an
interesting case to consider. Indeed, the optimal coupling is the product of marginals.

2.2. Hilbert metric and convergence in the discrete setting. In this paragraph, we give a brief
description of the usual proof of convergence of the contraction rate in a discrete setting.

Definition 2 (Hilbert metric). Let Rn
++ be the cone of positive coordinates vector. The Hilbert

metric on this cone is

(2.38) µ(x, y) def.
= max

i,j
log

(
xiyj

xjyi

)
.

A few remarks are in order: the quantity µ is nonnegative since one can take i = j in Formula
(2.38) to get µ(x, y) ≥ log(1) = 0 and µ(x, λx) = 0, therefore the Hilbert metric cannot be a metric
on Rn

++ but rather, it is a metric on Rn
++/R>0, i.e. quotienting by multiplication by positive scalars.

Thus, it is said to be a projective metric, a metric on the space of lines, or more precisely in this case,
half-lines. Remark that if µ(x, y) = 0 then it implies that ∀i, j one has xi

yi
=

xj
yj

therefore, this quantity
being independent of the index, one has x = λy for a positive real λ. Last, the triangle inequality

3Optimality is attained when the two quantities in the exponential are equal, that is
∫ 1

t0
ψu−v(s)ds =

∫ t0
0 ψu−v(s)ds =

1
2

∫ 1
0 ψu−v(s)ds.
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is simple to obtain and ensures that the Hilbert metric indeed is a metric on [Sn]++
def.
= Sn ∩Rn

++,
which is one possible parametrization of this quotient space. An important fact concerning the
Hilbert metric is the following:

Theorem 9. The set [Sn]++ endowed with the Hilbert metric is complete.

Proof. We refer the reader to [Nussbaum, 1987]. �

Obviously, this theorem is non trivial since [Sn]++ is an open set of Rn. This fact is a key ingre-
dient of the celebrated Birkhoff theorem:

Theorem 10. Let A ∈ Rm×n
++ be a matrix with positive coefficients, then

(2.39) µ(Ax, Ay) ≤ κ(A)µ(x, y)∀x, y ∈ Rn
++

where the constant κ(A) = tanh(∆(A)
4 ) < 1 and

(2.40) ∆(A) = max
i,j

µ(Aei, Aej) = max
ijkl

log

(
Aik Ajl

Ail Ajk

)
.

The constant κ(A) can be alternatively written as κ(A) = e∆(A)/2−1
e∆(A)/2+1

. The Perron-Frobenius theo-
rem is a corollary of Birkhoff’s theorem:

Theorem 11. Let A ∈ Rn×n
++ be a square matrix with positive coefficients and x0 ∈ Rn

++. The sequence
xk+1 = Axk

‖Axk‖
converges linearly to the unique solution which is an eigenvector associated with the spectral

radius eigenvalue of A. In particular, µ(xk, x∗) ≤ cκ(A)k.

The important consequence of Birkhoff theorem is the linear convergence of Sinkhorn since the
Gibbs kernel matrix is k = e−Cij/ε which has positive entries. In order to see this, we insists on the
following properties of the Hilbert metric:

Proposition 12. Pointwise multiplication on Rn
++ (that is (x · y)i = xiyi) as well as inversion ((x−1)i =

1/xi) are isometries for the Hilbert metric.

Proof. The proof consists in a direct check of the formula (2.38). �

Let us sketch the use of these two properties to get the linear convergence for the discrete
Sinkhorn algorithm.

Theorem 13. The discrete Sinkhorn algorithm (2.9) linearly converges to its unique solution.

Proof. Consider the sequences Dk
1 and Dk

2 generated by the Sinkhorn algorithm (2.9). One has
(2.41)

µ(Dk
2, Dk+1

2 ) = µ(1m./(AT Dk
1), 1m./(AT Dk+1

1 )) = µ(AT Dk
1, AT Dk+1

1 ) ≤ κ(AT)µ(Dk
1, Dk+1

1 ) .

Therefore, iterating this argument leads to

(2.42) µ(Dk
2, Dk+1

2 ) ≤ κ(A)2µ(Dk
2, Dk−1

2 )

where we used the fact that κ(AT) = κ(A). The rest of the proof follows from standard arguments
on contractions. �

In practice, the quantity κ(A) can be quantified for the Sinkhorn algorithm as follows, if c is a
cost which is L Lipschitz on the domain with bounded diameter D, after a Taylor expansion when
2
ε LD >> 1,

(2.43) ∆(A) ≤ 2
ε

LD and κ(A) ' (1− e−
1
ε LD)2 ' 1− 2e−

1
ε LD .

It can be compared with the constant we get in Proposition 7, κ = 1− e−
1
ε L diam(α). The constant ob-

tained by the Birkhoff theorem is slightly better than the one obtained by our simple computation.
The latter could probably be refined to match the one given by Birkhoff’s theorem by improving
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the bound on the entropy term ψ f (t) in the proof of Lemma 8. Indeed, the bound we gave rely on
the inequality ψ f (t) ≤ ‖ f ‖∞, but, here again, the inequality might be strict in some cases, whence
the potential gain.

2.3. A glimpse at numerical implementation. There are different applications of the Sinkhorn reg-
ularized optimal transport: in some cases, such as machine learning, the smoothness property is an
important feature and due to sometimes high-dimensional data, medium/large epsilon are useful
in practice. In such a case, the matrix-vector multiplication algorithm (2.9), which has of course a
computational cost less than O(N2), is appealing since it is GPU friendly and highly parallelizable.

(1) Measures on a grid: When the cost is separable, for instance, c(x, y) = ∑d
i=1 |xi − yi|2 on

Rd, the computational complexity can be reduced. For example, in dimension 2, if one has
a vector of size N = N1N2, one can first reshape the vector in a matrix of size (N1, N2),
convolve with the gaussian kernel e−|x1−y1|2/ε in the first dimension, which has the cost
lower than N2

1 N2. Applying this in larger dimension d leads to a computational cost lower
than O(N1+1/d) instead of O(N2), for naive implementation.

(2) Large cloud of points: This situation (typically 105 points) differs from the previous one
since the separability trick cannot be applied since the points are not on a mesh. A feasible
solution consists in recomputing the kernel in the log-sum-exp computations (see below). It
has been implemented in the pytorch package GeomLoss and KeOps [Charlier et al., 2018].
We highly recommend the reader to visit this webpage.

In theory, the rate of convergence of the Sinkhorn algorithm degrades when ε is small, it is also
observed in practice. For small ε, the computation needs to be done in Log-Sum-Exp formulation
as in the proof of convergence to avoid overflow issues. Indeed, the iterates stay bounded, essen-
tially due to the 1-Lipschitz property. The drawback of this formulation is that the matrix-vector
multiplication algorithm (2.9) is not available any longer and as a consequence, one cannot use
optimized and parallelized implementations of matrix multiplication.

3. THE RIEMANNIAN(-LIKE) STRUCTURE OF W2 AND THE BENAMOU-BRENIER FORMULA

In this section, we discuss formulations of optimal transport and related evolution flows (gra-
dient flows) that involves a time variable. For a more mathematical and complete discussion, we
refer to [Santambrogio, 2015].

3.1. The primal problem of W2 and its relaxation to the path space.

3.1.1. Monge and Kantorovich. Let us start with the Monge problem.

Definition 3 (Monge Problem). Fix µ ∈ P(X) and ν ∈ P(Y). Find a (measurable) map T : X 7→ Y
s.t.

(3.1) inf
T

∫
X

c(x, T(x))dµ(x) s.t. T∗µ = ν .

There are two issues with this formulation. The first one is that the optimization set may be
empty since it is not possible to find a Monge pas that sends one Dirac to two Diracs of mass
1/2. The second one is that the constraint is not convex making the problem difficult to solve.
The famous relaxation proposed by Kantorovich addresses these issues. Informally, it allows for
(infinitely) many maps which are associated to a given amount of mass at each location.

Definition 4 (Kantorovich Problem). Fix µ ∈ P(X) and ν ∈ P(Y). A coupling plan for µ, ν is:

(3.2) γ ∈ P(X×Y) s.t. [p1]∗γ = µ and [p2]∗γ = ν .

The set of coupling plans is denoted by C(µ, ν). The Kantorovich problem is the following linear
programming (LP) problem

(3.3) MKc(µ, ν) = min
γ∈C(µ,ν)

〈γ(x, y), c(x, y)〉 .
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From the mathematical point of view, existence of a minimizer is easy to establish under mild
assumptions since the set of coupling plans C(µ, ν) is compact for weak-* convergence of measures
(one has to show tightness and use Prokhorov theorem). If c(x, y) is continuous4, then existence of
a minimizing coupling plan is granted.

The main question is why this convex problem is the correct relaxation of the Monge problem.
It is possible to prove equality of these two quantities when µ has density with respect to the
Lebesgue measure. Note that it is always true in a discrete setting in which empirical measures with
uniform weights and equal number of points are used. Indeed, the Kantorovich problem is a linear
optimization problem for which there exists a solution at an extreme point of the optimization set:
The extreme points of this set are permutation matrices which defines a map between the points.
If the cost is continuous and the sets X, Y are compact, it is then easy to approximate any measure
with empirical measures with n distinct points, for which Monge maps are optimal.

Note that this LP has a particular form that can be exploited for numerical efficiency. When deal-
ing with (uniform) empirical measures with the same weights, algorithms such as the Hungarian
or auction with complexity in O(n3) can be used. When weights are not uniform, network flow
algorithms are used with a complexity in O(n3 log(n)).

3.1.2. Kantorovich on the path space. Let us assume that X = Y = M is a manifold and that the cost
is given by a Lagrangian

(3.4) c(x, y) = inf
{∫ 1

0
L(x, ẋ, . . . , x(n))dt ; x ∈ Cn([0, 1], M) and (x(0), x(1)) = (x, y)

}
,

where ẋ, . . . , x(n) denote the time derivatives of the path x. The most important example being
the case of the Riemannian squared distance on (M, g) being a Riemannian manifold: d2(x, y) on
M × M where d its associated Riemannian distance. For instance, in the case M is a Riemannian
manifold with a metric g, one can consider the induced distance squared

(3.5) c(x, y) = inf
{∫ 1

0
gx(ẋ, ẋ)dt ; x ∈ C1([0, 1], M) and (x(0), x(1)) = (x, y)

}
.

The Kantorovich optimization set is a probability on pairs of points, however, this cost arises from
an infimum problem on the set of paths. For instance, on a complete Riemannian manifold where
there is no cut locus, implying that for any two points there exists a unique geodesic between two
points, to a given pair of points, corresponds a unique minimizing path for the kinetic energy.
One can try to relax a bit further the Kantorovich problem by looking at a probability measure on
C([0, 1], M) and a cost c(ω) for ω ∈ C([0, 1], M). Then, one can form the following optimization
problem:

(3.6) inf
π
〈π(ω), c(ω)〉

under some marginal constraints. In constrast with the Kantorovich problem, since the evalution
map et1,...,tn : ω 7→ (ω(t1, . . . , ω(tm)) is continuous, one can impose multiple marginal constraints
at different times t1, . . . , tn. For the squared distance cost, the cost is c(ω) =

∫ 1
0 gx(ω̇, ω̇)dt and

+∞ if it does not exist. Then, one retrieves the Kantorovich two marginal constraints via et=0 and
et=1. Assuming the existence of an optimal plan π on the path space, we get an optimal plan for
the Kantorovich problem via pushforward [et=0,t=1]?π. It also gives a way to interpolate in time
the two densities µ and ν by [et]?(π).

This time interpolation for the case of the quadratic cost in euclidean spaces (or Riemannian
manifold complete and empty cut locus), is simple: particules follow straight lines. Once an op-
timal potential ϕ has been found between a density (wrt Lebesgue) µ and a measure ν, the time
dependent map is ϕt = Id+t(∇ϕ− Id) so that [et]?(π) = [ϕt]?µ. However, for a different cost on
the path space such as an acceleration cost (e.g. ‖ω̈‖2), interpolations are more complicated.

4Actually, lower semicontinuous and bounded below is sufficient.
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3.2. Monge on the path space and Benamou-Brenier. In this section, we introduce the Benamou-
Brenier formulation [Benamou and Brenier, 2000] of the Kantorovich problem. This formulation
applies to distances on length spaces or more generally which can be expressed as the minimization
of some Lagrangian as in the paragraph above. It can be seen as a reformulation of the problem
on the path space as a control problem on the space of time-dependent measures ρt. Let us first
introduce this formulation and then discuss it.

Definition 5 (Benamou-Brenier - non-convex formulation). Consider a Riemannian manifold (M, g),

(3.7) inf
ρ,v

∫ 1

0

∫
M

g(v(t, x), v(t, x))dρ(x)dt ,

under the continuity equation constraint ∂tρ(t, x) + div(ρ(t, x)v(t, x)) = 0 and time boundary con-
straints ρ(0) = ρ0, ρ(1) = ρ1.

In order to introduce it, we remark that the Monge formulation on the path space has not been
yet introduced. If instead of finding a plan, one look for a path of maps ϕt that solves the Monge
problem, we have

(3.8)
∫

X

1
2

d2(x, ϕ1(x))dµ(x) ≤
∫ 1

0

∫
X

1
2

g(ϕ(t, x))(∂t ϕ(t, x), ∂t ϕ(t, x))dρ0(x)dt ,

for every path ϕt of maps such that ϕ0 = Id and ϕ1 that pushforward ρ0 onto ρ1. In the case
of the Euclidean cost, the equality is achieved if and only if ϕt = Id+t(∇ϕ1 − Id). Therefore,
optimization on paths of maps reduces to optimization of the Monge problem. Using the time-
dependent change of variable y = ϕ(t, x), we get

(3.9)
∫ 1

0

∫
X

1
2

g(ϕ(t, x))(∂t ϕ(t, x), ∂t ϕ(t, x))dρ0(x)dt =
1
2

∫ 1

0

∫
X

g(y)(v(t, y), v(t, y))dρt(x)dt

by definition of the image measure. This equality is simply the rewriting of the Lagrangian ex-
pressed in Lagrangian coordinates (parametrize by a moving particle) into Eulerian (parametrize
by a fixed point in space) coordinates.

However, what is probably surprising is that we started from a convex optimization problem
which we turned into a non-convex one by introducing time. It is one of the key contribution by
Benamou and Brenier to propose a convex reformulation amenable to non-smooth convex opti-
mization:

Definition 6 (Benamou-Brenier - convex formulation). Consider two given measures ρ0, ρ1 ∈ P(M)
and the optimization set m ∈ M([0, 1]×M, TM) i.e. measure taking values in the tangent space of
M and ρ(t, x) ∈ M([0, 1]×M).

(3.10)
1
2

inf
ρ,m

∫ 1

0

∫
M

P‖x‖2(m(t, x), ρ(t, x))dρ(t, x)dt ,

under the linear constraint ∂tρ(t, x) + div(m) = 0 and same time boundary constraints on ρ. The
linear constraint is satisfied in the following weak sense, for every f (t, x) ∈ C1([0, 1]×M),

(3.11) −〈∂t f , ρ〉 − 〈∇ f , m〉 = 〈 f (t = 1), ρ1〉 − 〈 f (t = 0), ρ0〉 .

On a closed Riemannian manifold, there is no boundary conditions but on a bounded convex
set in Rd, this weak constraint also encodes the homogeneous Neumann boundary condition (zero
flux). Proving existence of minimizers can be done through the use of Fenchel-Rockafellar by first
defining the (pre-)dual problem. The result can be guessed since the functional is positively one-
homogeneous, it Legendre transform is a convex indicator which appears as a constraint: Namely,

ϕ ∈ C where C = {ϕ; (∂t ϕ(t, x),∇ϕ(t, x)) ∈ D, ∀(t, x) ∈ [0, 1]×M} where D = {a + ‖b‖2

2 ≤ 0} ⊂
R×Rd and the dual objective function is linear in ρ0 and ρ1

(3.12) sup
ϕ∈C
〈ϕ(t = 1), ρ1〉 − 〈ϕ(t = 0), ρ0〉 .
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The proof that the Kantorovich and Benamou-Brenier formulations are equal can be found in
[Benamou and Brenier, 2000] and it is based on the convexity of the functional. An explicit proof
on Riemannian manifolds including source terms in the continuity equation can be found in []. We
give hereafter a strategy of proof.

Sketch of proof on Rd. Use a mollifier and convolution on ρ(t, x) to define a smooth ρε(t, x) for a
smoothing parameter ε. It implies that ρε(t, x) satisfies the same continuity equation for the mo-
mentum mε which is the convolution between the chosen mollifier and m. In particular, one can
define a smooth velocity5 vε. Then, integrate the flow of this smooth velocity field, write it in
Lagrangian coordinates to obtain the Monge formulation. By one homogeneity and convexity Its
value is less than the objective functional evaluated at ρ, m. However, the boundary conditions are
lost. However, convolution with a mollifier, for instance gaussian, can be explicitly bounded in
Wasserstein. It finishes to prove that it is the correct relaxation of the Monge problem. �

This formulation was introduced by Benamou and Brenier for numerical purposes. Indeed,
one can apply non-smooth convex optimization algorithms to solve the optimization problem in
Definition 6.

Note that the BB formulation only involves kinetic energy; it is also possible to introduce a
potential energy on the space of densities, such as the Fisher information

V(ρ) =
∫

M
|∇(log ρ)|2 dρ(x) =

∫
M

|∇ρ(x)|2
ρ(x)

dx ,

where the second inequality is correct when ρ is sufficiently smooth. However, this energy is also
a convex functional of ρ since it is also the pointwise integration of a perspective function with
arguments (∇ρ, ρ). As a consequence, it can be extended from smooth densities to more general
measures. It is used in one of the formulation of the Schrödinger problem.

3.3. The Wasserstein Riemannian(-like) metric. The Benamou-Brenier formulation consists in writ-
ing a similar length minimizing problem, not on the base space M, but on the space of probability
measures P(M) with an additional variable which is the velocity field. We first rewrite the cost in
the optimal transport functional on the space of vector fields: that is, if ρ1 = (exp εv)∗(ρ0) where
exp is the Riemannian exponential, that is ρ1 is the pushforward of ρ0 by a small perturbation of
identity by a vector field v defined on M. For instance, on the Euclidean space, assuming that the
coupling is πε = (id, id+εv)∗ρ0, we get

(3.13) 〈πε, d(x, y)2〉 ' ε2
∫

M
‖v(x)‖2 dρ0(x) .

Our goal is to identify the Riemannian(-like) metric of optimal transport. We consider a tangent
vector to a probability density ρ (say smooth and positive) that we denote by δρ. Then, to find
the norm of δρ, it is sufficient to find the vector field that will infinitesimally pushforward ρ onto
ρ + εδρ. The action of a vector field on a density is −div(ρv) = δρ. Note that there are many vector
fields that can reproduce this infinitesimal change in ρ. The selection of v is done by minimization
of the kinetic functional

(3.14) inf
v

1
2

∫
‖v‖2dρ(t, x) under the constraint − div(ρv) = δρ .

Using Lagrange multipliers, the vector field v is necessarily the gradient of Lagrange multiplier.
Therefore, one can replace the space of vector fields by the space of function p, however, in this
case the constraint reads

(3.15) ∆ρ(p) := −div(ρ∇p) = δρ .

On a closed (connected) Riemannian manifold and if ρ has sufficient (mild) regularity, this is an
elliptic equation whose solution is unique up to a constant. Now, one can write the Riemannian(-
like) metric tensor of the Wasserstein space, at least for sufficiently smooth densities ρ:

5Notice that this velocity is NOT the convolution by the mollifier of the corresponding vector field v.
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Proposition 14. The Riemannian(-like) metric tensor at a density ρ is

(3.16)
∫

M
‖∇∆−1

ρ δρ‖2dρ(x) .

which is also equal to (when dealing with L2 densities)

(3.17)
∫

M
∆−1

ρ (δρ)δρdx .

The order of the Wasserstein metric is −1 since one first integrate twice and then differentiate
once in the above formula. It is thus similar to an H−1 metric that depends on the current density.
It is tempting to compare the Wasserstein metric and a form of H−1 metric (the formula above
in which ρ is taken to be constant as the reference volume measure, e.g. Lebesgue in Euclidean
space). It seems an easy computation if there exists a lower bound and an upper bound on the
density. However, the key point is to control that quantity along geodesics. Such types of results
have been proven in the literature and the key point of this section is that the Wasserstein metric is
locally like an H−1 type metric, which might be simpler to compute if one is just interested in the
metric tensor. It is the case for gradient flows which are discussed next.

Remark that when ε is sufficiently small, |x|2/2+ ε∇F(x) is convex when∇F is smooth enough.

3.4. Gradient flows. Gradient flows with respect to the Wasserstein metric is now a well-known
and well-studied subject. This literature was triggered by Otto’s work on the porous medium equa-
tion [Otto, 2001] and the famous JKO (Jordan-Kinderlehrer-Otto) scheme in [Jordan et al., 1998].
We briefly present it now from an informal point of view since it is connected with convex opti-
mization. Of course, it is the most important example of application where one actually does not
need the full optimal transport structure (i.e. computing geodesics), but only the Riemannian(-like)
structure. First recall how to compute a gradient in the case of a function on the Euclidean space
with respect to a metric defined by a symmetric positive matrix A. It has the following variational
formulation (check using first-order optimality condition):

∇ f (x) = arg min
w

1
2
〈w, Aw〉 − d fx(w) ,

where the dot product is with respect to an ambient L2 metric. It gives ∇ f (x) = A−1(d fx). We
simply need to apply this formula on the space of densities. We use this formulation in a similar
way for the Wasserstein space. Consider a functional on the space of densities denoted by F(ρ),
which is Fréchet differentiable. We denote by δF

δρ its derivative. By the formula above (3.17) the
operator A = ∆ρ and the gradient flow is

(3.18) ∂tρ = −∆ρ(
δF
δρ

) = div
(

ρ∇ δF
δρ

(ρ)

)
.

Let us perform the same computation again but at the level of vector fields instead of using di-
rectly the metric tensor (actually this is a very similar derivation but we do it again for pedagogical
purpose). In mathematical terms, using the same approach than in Formula (3.14), we get

(3.19) arg min
v

1
2

∫
M
‖v(t, x)‖2 dρ(x)−

〈
δF
δρ

(ρ),−div(ρv)
〉

,

where we informally denoted by δF
δρ the Fréchet derivative of F. Remark that it is not a direct

application of the formula for the gradient recalled above since the minimization is done at the
level of vector fields. We get now, v = ∇ δF

δρ (ρ) and thus, again

(3.20) ∂tρ = div
(

ρ∇ δF
δρ

(ρ)

)
.
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3.4.1. The Fokker-Planck equation with a strongly convex potential V. The Fokker-Planck equa-
tion is the PDE that arises from the law of the process associated with the Langevin dynamic:

(3.21) dX(t) = −∇V(X(t)) +
√

2dB(t) .

The law of X(t) denoted by ρ(t) evolves accordingly to

(3.22) ∂tρ = div(ρ∇V) + ∆ρ .

It is known that the density ρ(t) converges to ρ∞ = 1∫
e−V(x)dx

e−V . Note that ρ∞ is the unique steady

state of this PDE. Indeed, 0 = div(ρ∇V) + ∆ρ = div(ρ(∇V +∇ log ρ) which implies ρ = e−V+cste

and the constant is chosen so that ρ is a probability measure.
Importantly, this process is used in Bayesian approaches in order to simulate under the law of

interest ρ∞. The key point in simulating (3.21) is that one does not need to have access to the renor-
malizing constant

∫
e−V(x)dx. Indeed, the flow equation is invariant to the addition of a constant

to the potential.
It appears that the Wasserstein geometry is suitable to study the convergence of ρ(t) to ρ∞ which

is known to hold. This convergence will be proven next using this point of view. Let us apply the
gradient flow computation to the entropy+potential functional F(ρ) =

∫
X ρ(x)(log(ρ(x))− 1)dx +∫

X V(x)ρ(x)dx for which δF
δρ (ρ) = log(ρ) + V(x) and so

(3.23) ∂tρ = ∆ρ + div(ρ∇V) ,

which is again the Fokker-Planck equation. Now, the functional F enjoys geodesic convexity: the
linear term is convex in the Wasserstein space if and only if V is convex. Let us prove this result:
geodesics between two Diracs are geodesics in M. So geodesic convexity in the Wasserstein space
implies plain (geodesic) convexity of V on M, so the convexity of V is necessary. It is also sufficient
since any geodesic curve in the Wasserstein space is supported by geodesics (for instance via the
Lagrangian representation on the path space) on M. Consequently, if V is convex, then it is also the
case of ρ 7→

∫
M V(x)dρ(x). We thus have the following fact:

Proposition 15. The term
∫

M V(x)dρ(x) is geodesically convex in Wasserstein, if and only if V is (geodesi-
cally6) convex. The entropy is also convex for M = Rd.

We now prove the second point: it can be seen by writing with f (s) = s log(s) and using the
change of variable formula

(3.24)
∫

Rd
f (ρ(t, x))dx =

∫
Rd

f (
ρ0(x)

det(∇ϕ(t, x))
)det(∇ϕ(t, x))dx =

∫
Rd

log(
ρ0(x)

det(∇ϕ(t, x))
)dx .

Using the structure of ϕ(t), ϕ(t) = Id+t(ϕ(1)− Id) and the fact that log(det) is a concave function
on the space of symmetric positive matrices, we get the result. An important result by McCann
[McCann, 1997] gives sufficient conditions on a function f so that

∫
Rd f (ρ)dx is convex in Wasser-

stein. Among the important examples is f (x) = xp for p > 1. The general conditions are that f is
convex, f (0) = 0, superlinear and the following function is convex decreasing:

(3.25) s 7→ sd f (s−d) .

Convexity of the entropy in Wasserstein on more general Riemannian manifold has been the
topic of intense study which was pioneered by Lott, Villani [Lott and Villani, 2006] and Sturm
[Sturm, 2006]. They first proved that the entropy is λ-convex if the Ricci curvature of the space
is lower bounded. Then, λ-convexity of the entropy along W2 geodesic can be taken as a definition
for Ricci curvature on spaces that are more general than Riemannian manifolds.

As a consequence, the Kullback-Leibler divergence between ρ and ρ∞ satisfies the PL inequality.
Such an inequality is also called a log-Sobolev inequality and it reads

(3.26) KL(ρ, ρ∞) ≤ 1
2λ

∫
Rd
‖∇ log(ρ/ρ∞)‖2dρ(x) =

1
2λ
‖∇ρ KL(ρ, ρ∞)‖2

W2 .

6On a complete Riemannian manifold.
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The consequence of Proposition 15 and Corollary 31 is that, for a constant C

(3.27) KL(ρ, ρ∞) ≤ Ce−2λt .

Exponential convergence with respect to KL has been obtained in a simple and elegant manner. We
have seen that interpreting some particular PDE’s from the point of view of gradient flows allows
for simple analysis. However, this allows to extend the corresponding PDE to general measures
instead of densities.

3.4.2. A word on the time-discrete scheme: the JKO scheme. This line of research originates from
De Giorgi’s minimizing movement scheme [de Giorgi, 1993]. One can now define implicit gradient
scheme similar to Definition 19 by replacing the Hilbert norm with the Wasserstein distance, with
τ a timestep parameter,

(3.28) ρk+1 = arg min
ρ

1
2τ

W2
2 (ρk, ρ) + F(ρ) .

The convergence of this time discrete scheme in the case of entropy has been proven by Jordan,
Kinderlehrer and Otto [Jordan et al., 1998] and a rather complete study of this scheme is given
in Ambrosio, Gigli, Savaré’s book on Gradient Flows [Ambrosio et al., ]. A lighter introduction is
given in Santambrogio’s ”{Euclidean, metric, and Wasserstein} gradient flows” [Santambrogio, 2016].
We refer the reader to these two last references for a detailed discussion of gradient flows.

Remark 5. Note again that one does not need the Wasserstein metric itself in order to get the convergence of
this gradient flow to its continuous limit. Every divergence on the space of densities for which the underlying
metric tensor is the same than the Wasserstein distance would be suitable.

Remark 6. One particular interest of such a variational formulation is that it is possible to model evolu-
tion equations for which the corresponding PDE is somewhat singular. It also gives a practical numerical
scheme to implement this PDE in discrete time, with interesting properties such as preserving the positivity
constraint.

3.5. Unbalanced optimal transport (UOT). Following the Benamou and Brenier formulation, there
has been lots of models proposed in the literature deriving from it. We focus hereafter on the so-
called Wasserstein-Fisher-Rao model [Chizat et al., 2015], which is also called Hellinger-Kantorovich
[Liero et al., 2015].

3.5.1. Dynamic formulation of unbalanced optimal transport. We choose to present the extension of
optimal transport to unbalanced optimal transport, that is optimal transport with creation/deletion
of mass. Another formulation of the problem is ”how to define an extension of optimal transport
for marginals that do not have the same total mass?”. A possible way to go is to relax the marginal
constraints in the static formulation using a divergence such as Kullback-Leibler. It is particularly
nice for numerics and for the extension of the Sinkhorn algorithm. However, the difficulty is,
for instance, to prove that the resulting object leads to a distance on the space of positive Radon
measures. Another way to go would be to start from the Benamou-Brenier formulation which is of
particular interest since it gives access to the Riemannian like metric tensor of optimal transport.
Then, modify the Riemannian tensor in order to give the possibility of creation/destruction of mass.
Namely, the creation/destruction of mass can be introduced via the continuity equation

(3.29) ∂tρ + div(ρv) = αρ

where we introduced a source term parametrized by the growth rate α which depends both on time
and space. Then, we have to postulate7 a Lagrangian on this growth rate and a natural action for
this is the Fisher-Rao functional

(3.30)
1
2

∫
M

α2 dρ .

7Other Lagrangian can be postulate but to make it well-defined on the space of measures, it is important to have a
one-homogeneous functional.
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With this Lagrangian, the extension of the Benamou-Brenier formulation is as follows, minimize,
under Equation (3.29), the action

(3.31) inf
ρ,v,α

∫ 1

0

∫
M

1
2
(‖v(t, x)‖2 +

1
4

α(t, x)2)dρ(t, x)dt ,

where we emphasized the dependence of the control variable on time and space. This slight mod-
ification of Benamou-Brenier leads to the following dual problem: Maximize

∫
M ϕ1(y)dρ1(y) −∫

M ϕ0(y)dρ0(y) under the constraint that ϕ ∈ C1([0, 1], M) such that

(3.32) ∂t ϕ +
1
2
(‖∇ϕ‖2 + ϕ2) ≤ 0 .

Note that, as it is the case in standard OT, this equation does not depend on the current density
ρ(t). It implies that given one ϕ(t) that realizes the equality (instead of the inequality), one can use
it to solve the generalized continuity equation and thus obtain a path of minimizing energy.

Interestingly, this optimization problem is a slight modification of the Benamou-Brenier formu-
lation and the same numerical framework can be used to solve the problem. Using the language
of convex analysis, the new metric tensor is obtained as the infimal convolution of the Wasserstein
metric tensor and the Fisher-Rao metric tensor, whence its name Wasserstein-Fisher-Rao. It has
been named Hellinger-Kantorovich in [Liero et al., 2015] since at the level of distances, it interpo-
lates between Kantorovich and Hellinger distances. Something that is not clear from this dynamic
formulation is the existence of a Kantorovich formulation of the problem. There are different ways
to discover the existence of an associated Kantorovich problem:

(1) In standard OT, the Hamilton-Jacobi equation has known solutions: Hopf-Lax solutions
which are infinimal convolution of the initial ϕ0 and the distance squared. One would need
an equivalent of such solution, which is however is hard to find in the literature. We do not
discuss it further.

(2) A more pedestrian way is to start from the ansatz that ρ is a Dirac mass for all time:
ρ = m(t)δx(t) then the Lagrangian reduces to m dx2 + 1

4
dm2

m , which can be transformed
into r2 dx2 + dr2 with the change of variable m = r2. This metric is a polar coordinate
metric for which the change of variables reix can be used. Therefore the distance is explicit
d2(r2

0δx0 , r2
1δx1) =

∣∣r0eix0 − r1eix1
∣∣2. Using the variables position and mass, it reads

(3.33) d2((x, m), (y, n)) = m + n− 2
√

mn cos(min(d(x, y),
π

2
)) ,

which is one-homogeneous in the mass variables (m, n).
One key property of the standard Wasserstein distance is that it is positively 1-homogeneous,

with respect to mass scaling. Recall the following property, whose proof is straightforward,

Lemma 16. If f : E→ R is a convex function on a vector space E which is positively homogeneous, then f
is sub-additive, namely

(3.34) f (x + y) ≤ f (x) + f (y) .

A direct consequence of this property (Wp is the p-Wasserstein distance) is that

(3.35) Wp
p

(
1
n

n

∑
i=1

δxi ,
1
n

n

∑
i=1

δyi

)
≤ 1

n

n

∑
i=1

Wp
p (δxi , δyi ) .

This inequality uses a particular decomposition of the measures and it applies the homogeneity
and convexity property. In fact, optimizing on all possible decomposition of the measures, one
retrieves, in the case of probability measures, the standard definition of the Wasserstein distance as
a linear programming problem.

Note that the dynamic formulation of UOT leads to a convex problem on the space of positive
Radon measures, which is also positively homogeneous. In particular, it is natural to transfer such
a formulation to UOT. It is the purpose of the next section to convince the reader that it can be done.
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3.5.2. Kantorovich formulation of WFR. A priori, formulating an optimization problem in which one
can decompose the marginals freely in collections of particles in position and mass and optimizing
over it, should give an upper bound on the dynamic formulation problem because the continuity
equation in momentum variables is linear. There is a slight technical problem in formulating such
an optimization problem since one has to deal with the possibility of having 0 mass at some points,
i.e. to deal with the apex of the cone. A way to overcome this issue is to consider a Dirac at this
point with 0 mass which simply represents an absence of mass: δ(x,0) for x in the base space. More
generally, any Dirac mass on M can be represented via its lift on the cone by (x, m) 7→ δ(x,m).
However, such a lift should be coherent with the structure of convex cone of positive measures.
For instance the representation of a marginal using p1δ(x,m1)

+ p2δ(x,m2)
should be equivalent to the

representation δ(x,m1 p1+m2 p2)
. It simply means that one can represent a marginal µ on the M as the

integration over a mass variable of a positive measure on the cone µ̃ that satisfies:

(3.36)
∫

R≥0

mdµ̃(x, m) = µ(x) .

The minimization problem reads

(3.37) min
µ̃,ν̃
〈d2((x, m), (y, n)), π̃((x, m), (y, n))〉

under the two moment constraints corresponding to the marginal constraints,

(3.38)

{∫
R≥0

mdµ̃(x, m) = µ(x)∫
R≥0

ndν̃(x, n) = ν(x) .

Using convexity and 1-homogeneity of the dynamic formulation, it can be proven that the two
problems coincide. The main argument consists in smoothing the quantities to obtain a competitor
that one can control. Now, let us write the dual problem associated with this moment constrained
optimal transport on the cone. The main difference with a general cost, is the one homogeneity of
the cost. Let us denote by p0, p1 the Lagrange multipliers associated with the marginal constraints
and write

(3.39) sup
p0,p1∈C(X)

〈mp0(x) + np1(y), π1 ⊗ π2〉 = 〈p0(x) + p1(y), µ⊗ ν〉

under the constraint mp0(x) + np1(y) ≤ d((x, m), (y, n))2. Observe that the constraint is a 2-
homogeneous polynomial function in terms of r =

√
m and s =

√
n, so that one can use the

discriminant of this polynomial function to obtain

(3.40) (1− p0(x))r2 + (1− p1(y))s2 − 2rs cos(min(d(x, y), π)) ≥ 0 ⇐⇒
cos(min(d(x, y), π))2 ≤ (1− p0(x))(1− p1(y)) and (1− pi(x)) ≥ 0 fori = 1, 2 .

Pay attention to the fact that this polynomial function is only observed on R2
>0 and not on the

whole R2. However, the dominating coefficients are positive by constraint and the derivative (of
the polynomial function in terms of r/s) at 0 is nonpositive. As a consequence, nonnegativity of
this polynomial function on R2

>0 implies its nonnegativity on R2.
The key point is that the constraint can be transformed into a constraint similar to standard optimal
transport by simply taking the logarithm. With h0 = − log(1− p0(x)) and h1 = − log(1− p1(x)),
the objective functional becomes

(3.41) sup
h0,h1

〈1− e−h0 , µ〉+ 〈1− e−h1 , ν〉 ,

under the constraint

(3.42) h0(x) + h1(y) ≤ − log(cos(min(d(x, y), π))2) .

Fortunately, taking this logarithm change of variable, the convexity of the problem is not destroyed,
which is a remarkable fact. The objective functional resembles to the Legendre transform of the
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entropy x log(x) − x + 1 so that it could be understood as the Legendre transform of an integral
functional such as Kullback-Leibler.

Exercise: Write the dual formulation using the Fenchel-Rockafellar theorem (see Appendix,
Theorem 35) and compare with the formula proposed below.

The dual formulation of the above problem with variables h0, h1 results in a reduced problem
on the space of positive Radon measures: Given µ, ν two positive Radon measures, the associated
quantity is a distance on the space of positive Radon measures and is given by the Wasserstein-
Fisher-Rao metric (also known as Hellinger-Kantorovich),

(3.43) WFR(µ, ν)2 = inf
π∈M+(M×M)

KL(π1, µ) + KL(π2, ν) + 〈π,− log(cos2(min(d(x, y),
π

2
)))〉 ,

where the optimization is performed on π which is a positive Radon measure on the product
space M × M. For the rigorous proof of this theorem, we refer the reader to [Chizat et al., 2015]
or [Liero et al., 2015]. The surprising fact in the Kantorovich formulation above is the cost which
appears in the scalar product and it is explained by the derivation above. One can replace it with the
squared distance while still preserving the metric property of the resulting quantity. However, the
length space implied by this metric known as Gaussian-Hellinger is the one given by WFR (3.43),
therefore it shows the importance of the WFR formulation (this fact is proven in [Liero et al., 2015]).
A general approach is developed in [Liero et al., 2015] that provides a recipe to go from a static for-
mulation in a similar form than (3.43) with different Csizar divergences to the conic formulation.

From the point of view of numerics however, the conic formulation is a priori less attractive
than the reduced formulation (3.43) since it has an additional dimension in the mass variable. Yet
both formulations are amenable to entropic regularization and lead to different regularization. The
formulation that is most commonly used in practice is the reduced formulation (3.43) with an as-
sociated Sinkhorn algorithm for which linear convergence can be proven also for more general
divergence terms.

3.5.3. An informal discussion of Kantorovich formulation in position and mass. One could directly start
by postulating a cost in position and mass, say (x, m) and solve an optimal transport problem in
this variable. As previously explained, one issue are the marginal constraints in this ”conic” for-
mulation which are not defined. The lift from the space of positive measures to positive measures
on the cone can be explicitly defined by

(3.44) mδx 7→ δx,m .

and for a density

(3.45) ρ(x) 7→ δρ(x)(r)⊗ dx .

However, in general, the measure on the right-hand side has infinite total mass when working
with a reference measure on the base which has infinite volume. One can try to correct this point
by introducing another reference measure, say η that is a probability density and use

(3.46) mδx 7→ δx,m .

and for a density

(3.47) ρ(x) 7→ δρ(x)/µ(x)(r)⊗ dη(x) .

However, one must then define an optimal transport problem on the cone that does not depend on
the choice of this reference density. Let us give it a try and write the Kantorovich formulation for
such a transport problem with reference density µ. We have

(3.48) sup
f ,g

∫
M×R≥0

f (x, m)δµ(x)/η(x)(m)⊗ dη(x) +
∫

M×R≥0

g(y, n)δν(x)/η(x)(n)⊗ dη(x) .
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and the constraint f (x, m) + g(y, n) ≤ c((x, m), (y, n)). A sufficient condition for the resulting
problem to be independent of the choice of the reference density (in the case of measures with
densities on the base space), is to impose test functions f and g to be one-homogeneous with respect
to the second variable. As seen above, imposing such a constraint on test functions is implied by
imposing moment constraints with respect to the mass variable. However, it implies that a pre-
optimization can be done on the free choice of reference measure η which results in replacing the
cost c by c̃x,y(m, n) := infa>0 c((x, am), (y, an))/a, thus turning the cost into a one-homogeneous
function in (m, n).

Now, the inequality constraint reads as, denoting f (x, m) = m f̃ (x) and similarly for g,

(3.49) m f̃ (x) + ng̃(y) ≤ c̃((x, m), (y, n)) .

In terms of Legendre transform in (m, n), this inequality can be written c̃∗x,y( f̃ (x), g̃(y)) ≤ 0. One-
homogeneity of the cost c̃ implies that c̃∗x,y is the convex indicator function of a convex set denoted
by C(x, y). The resulting problem becomes

(3.50) sup
f̃ ,g̃

∫
M

f̃ (x)dµ(x) +
∫

M
g̃(y)dν(y) ,

under the constraint

(3.51) ( f̃ (x), g̃(y)) ∈ C(x, y) .

Remark that the resulting problem is completely expressed in terms of quantities which do not
make use of the cone construction. From this discussion, it is not difficult to prove that if the
cost on the cone is one-homogeneous in (m, n) and a power of a distance on the cone, then the
corresponding problem defines a power of a distance on the space of positive Radon measures.
The main argument of the proof of the triangle inequality is to use the homogeneity property and
the standard gluing lemma.
What is left open in our discussion, is the link with the primal problem (3.43) that was formulated
using Csizar divergences on the marginals.

3.5.4. Metric structure and examples of gradient flows. Based on a similar computation in the OT case,
it is not difficult to write the metric tensor on the space of nonnegative smooth function which are
integrable, at least very formally.

Exercise 1: Write the Riemannian(-like) metric tensor corresponding to the Wasserstein-Fisher-
Rao metric.
Exercise 2: Write the Wasserstein-Fisher-Rao gradient flow of the entropy:

∫
(ρ(x) log(ρ(x))−

1)dx.

What is important is to find functionals that are geodesically convex for this new metric, akin
to the entropy+potential functional in the classical OT case. This question have been addressed in
[Laschos and Mielke, 2022].

3.5.5. Dynamic formulation of entropic regularization. Let us make a small detour to classical entropic
regularization in optimal transport. Importantly, the entropic regularization has also a dynamic
formulation on the space of densities. One has the equality
(3.52)

OTε(ρ0, ρ1)+
dε

2
log(2πε) = − ε

2
(KL(ρ0, Leb)+KL(ρ1, Leb))+ inf

ρ,v

∫ 1

0

∫
Rd

(
1
2
|v|2 + ε2

8
|∇ log(ρ)|2

)
dρ dt ,
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under the continuity equation constraint ∂tρ + div(ρv) = 0. The term in −
∫
|∇ log(ρ)|2dρ is a

potential term (in contrast to the kinetic energy term), it is known as the Fisher information. Opti-
mality is attained for a vector field v which is a gradient field and one has the following system

(3.53)

{
∂tρ + div(ρ∇p) = 0

∂t p + 1
2 |∇p|2 = δ

δρ

(
ε2

4

∫
M |∇ log(ρ)|2)dρ

)
.

Interestingly, this system can be transformed by introducing the following change of variables z =

p− ε
2 log(ρ)8 to get

(3.54)

{
∂tρ + div(ρ∇z) = ε

2 ∆ρ

∂tz + 1
2 |∇z|2 = − ε

2 ∆z .

The reader could be surprised of the minus sign in the second equation, however, this equation is to
be understood as an adjoint equation which is read backward in time. Recent numerical algorithms
have been proposed to solve the formulation (3.60) which is smooth and strongly convex on some
bounded sets (depending on the initial and final conditions) due to the entropic term. In particular
acceleration methods in convex optimization can be used.

Using the following change of variables (Hopf-Cole formula)

(3.55)

{
η(t, x) =

√
ρ(t, x)ez(t,x)/ε

η?(t, x) =
√

ρ(t, x)e−z(t,x)/ε ,

this system is transformed into

(3.56)

{
∂tη(t, x) = ε

2 ∆η

∂tη
?(t, x) = − ε

2 ∆η? .

Each of these equations have explicit solutions in Euclidean space which is given by convolution
with a Gaussian kernel. This fact explains why it is possible to obtain a static formulation of the
corresponding dynamic formulation of Schrödinger bridge. Note that the corresponding density is
given by η(t, x)η?(t, x).

3.5.6. Entropic regularization and UOT. We now use the geometric perspective of Léger [Léger, 2017]
to introduce the corresponding formulation of a Schrödinger bridge for Wasserstein-Fisher-Rao
which was recently proposed in [Buze and Duong, 2023] with a rather different argument. The
Schrödinger problem can be abstracted (although without sharing all the nice properties) to the
following form. Consider a Riemannian manifold (M, g), a function F : M → R and the following
Lagrangian, defined on curves C1

pcw([0, 1], M)

(3.57)
∫ 1

0
g(x(t))(ẋ(t), ẋ(t)) +

1
4

g(x)(∇F(x(t)),∇F(x(t)))dt .

Remark that it is related the Schrödinger problem for M = P1(R
d), the metric g being the

Wasserstein metric and the function F being the entropy. The curve ρ(t) ∈ P(Rd) is subject to
the continuity equation ∂tρ(t) + div(vρ(t)) = 0, the corresponding length (not optimized over v)
is
∫

Rd |v(x)|2dρ(t, x) and the squared norm of gradient of the entropy is the Fisher information∫
Rd |∇ log(ρ(t, x))|2dρ(t, x).

The point in considering this formulation is to make clear the relation between two formulations:
rewrite

ẋ = u− 1
2
∇F(x)

for u a tangent vector at x. Then, optimize on u the Lagrangian

(3.58)
∫

g(x(t))(u, u)dt

8Sometimes, the quantity ∇ log(ρ) is called the osmotic velocity, see for instance Nelson’s book [Nelson, 1967].
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subject to the previous constraint. In the Wasserstein case with entropy as function F, the constraint
reads

∂tρ + div(ρu) =
1
2

∆ρ

and the Lagrangian reads ∫
Rd
|v(x)|2dρ(t, x) .

Now, expand the squares,

g(x)(ẋ +
1
2
∇F(x), ẋ +

1
2
∇F(x)) = g(x(t))(ẋ(t), ẋ(t))+

1
4

g(x)(∇F(x(t)),∇F(x))+ g(x)(∇F(x), ẋ)

Remark that the last term can be explicitly integrated∫ 1

0
g(x)(∇F(x), ẋ)dt =

∫ 1

0
DF(x)(ẋ)dt = F(x(1))− F(x(0)) .

Therefore, the two problems of minimization are equivalent up to boundary terms. In the Wasser-
stein case, it is the entropy of ρ(t = 0) and ρ(t = 1). The same computation holds for the
Wasserstein-Fisher-Rao metric: what is different here is the metric and therefore gradients. For in-
stance, considering the entropy Ent(ρ) =

∫
ρ log(ρ)−

∫
ρ, its gradient norm squared with respect

to Wasserstein leads to
∫
|∇ log(ρ)|2dρ(x) whereas with respect to Wasserstein-Fisher-Rao, it leads

to
∫
|∇ log(ρ)|2 + 1

δ2 log(ρ)2dρ(x). The system of equation for the entropy and the Wasserstein-
Fisher-Rao metric leads to

(3.59) ∂tρ(t) + div(ρu)− 1
2

∆ρ = αρ− 1
2δ2 ρ log(ρ) .

and minimization of the kinetic energy associated with WFR:∫ 1

0

∫
Rd

(|u(t, x)|2 + δ2α(t, x)2)dρ(t, x)dt .

In an other formulation,

(3.60) inf
ρ,v,α

∫ 1

0

∫
Rd

(
1
2
|v|2 + δ2

2
|α(t, x)|2 + ε2

8
(|∇ log(ρ)|2 + 1

δ2 | log(ρ(t, x))|2
)

dρ dt .

under the constraint that

(3.61) ∂tρ + div(ρu) = αρ .

What is left open in our discussion is the existence of a static model associated with this formula-
tion. Not known in the current literature is a probabilistic model associated with it.

4. FURTHER DEVELOPMENTS AROUND ENTROPY REGULARIZED OT

This discussion is based on [Feydy et al., 2018] in which we study new divergences on the space
of probability for applications to machine learning. The motivation is to use the computational effi-
ciency of Sinkhorn algorithm while still retaining important mathematical properties: In particular,
the Wasserstein L2 distance metrizes the weak-* convergence on the space of probability measures
on a compact metric space. Recall that, on a compact metric space, the weak-* convergence of µn
to µ is written µn ⇀ µ and is defined by duality with continuous functions C(X), 〈 f , µn〉 → 〈 f , µ〉
for every f ∈ C(X). Convergence in L2 Wasserstein distance is equivalent to weak-* convergence.
Recall that the L1 Wasserstein distance has a dual formulation on the space of 1-Lipschitz func-
tions f , W1(µ, ν) = sup{〈 f , µ − ν〉; Lip( f ) ≤ 1}. If instead of maximizing this quantity over f
in the 1-Lipschitz ball, one instead chooses f ∈ BH , with H a Reproducing Kernel Hilbert Space
(RKHS) such as Sobolev spaces (of sufficiently high degree of smoothness), one obtains Maximum
Mean Discrepancies (MMD), well-known in the Machine Learning litterature, which also metrizes
the convergence in law. Although this is a common feature between MMD and OT, there are two
important differences, for instance in the discrete setting,
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FIGURE 1. The red crosses stand for the centered grid while the blue dots are for
the staggered grid

(1) MMD distances are smooth with respect to the position of Dirac masses which is not the
case for OT.

(2) With respect to the position of the Dirac masses, OT has more convexity properties than
MMD (indeed, if the two input measures differ from a translation (which is the optimal
map), then the OT cost is convex with respect to the translation).

The smoothness property is important for the use of smooth optimization methods and in partic-
ular the use of automatic differentiation. Then, convexity is important for convergence towards a
global optimum when doing gradient descent with respect to the position of Dirac masses. It is
possible to define new divergences based on entropy regularized optimal transport that interpo-
lates between OT and MMD. We refer to [Feydy et al., 2018] for more background and motivations
and we only state the main result.

Theorem 17. Define

(4.1) Sε(µ, ν) = OTε(µ, ν)− 1
2
(OTε(µ, µ) + OTε(ν, ν)) .

If the cost c in definition of OTε defines via e−
1
ε c(x,y) a positive universal kernel then Sε is a symmetric

positive definite loss function which is smooth with respect to both input measures, as well as convex with
respect to each of the inputs (i.e. coordinatewise).

Due to the use of the Sinkhorn algorithm to compute each term in the definition of Sε, it makes
this new divergence a computable smooth approximation of optimal transport. For more details
on the actual algorithm, we refer to [Feydy et al., 2018]. Importantly, the gradient has a closed form
and is defined in the continuous setting. In particular, automatic differentiation can be overriden
if needed, however, its accuracy depends on the convergence of the Sinkhorn algorithm. Using the
formulation (3.60), it is possible to justify, at least formally, why this formula is expected to lead to
better approximation of optimal transport.

4.1. A proximal algorithm for the dynamical formulation. One way to numerically solve the dy-
namical formulation of optimal transport consists in formulating a discrete functional approximat-
ing the continuous setting, on which convex optimization algorithms can be applied. The continu-
ous formulation can be written as

(4.2) W2(ρ0, ρ1)
2 = inf

ρ,m
K(ρ, m) + ιC(ρ, m) .

where C is the convex set of ρ, m that are time dependent quantities such that ∂tρ +div(m) = 0 and

ρ(0) = ρ0 and ρ(1) = ρ1. The quantity K(ρ, m) represents the kinetic energy 1
2

∫ 1
0

∫
M
‖m‖2

ρ dρ(t, x)dt.
In computational fluid dynamics, the method of staggered grid is often used for discretizing the
continuity equation. This method makes use of two different grids for discretization: the centered
grid and the staggered grid, see Figure 4.1. When the size of the problem is not too large, this is
the method of choice for solving Poisson equation. We are going to discretize the equations using
finite differences9. Let us assume that we have a quantity s defined on the staggered grid, that is
s(i + 1/2) for i ∈ [−1, n] for a 1D centered grid defined on [0, n]. Then, the divergence operator
applied to s will map the staggered quantity on the centered grid:

div : Staggered→ Centered

s 7→ s(i + 1/2 + 1)− s(i + 1/2) .

9More involved discretization could be envisaged at this point.
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The discrete adjoint div∗ is thus defined as

div∗ : Staggered→ Centered

c 7→ −[c, 0] + [0, c] ,

where the notation [0, c] indicates the concatenation of 1D tensors [0] and c. Then, the constraint
∂tρ +div(m) = 0 can be rewritten as divt,x(ρ, m) = 0 and, for each direction (time and space), there
is a corresponding staggered grid: ρ is staggered in time and m is staggered in space.

Then, we have left the question how to switch between the two representations of the data:
staggered and centered. We simply use the interpolation operator to go from staggered to centered
grid representation:

I : Staggered→ Centered

s 7→ 1
2
(s(i + 1/2) + s(i− 1/2)) .

Then, one can propose the following form of the functional, denoting ρ, m the unknowns and ρ̃, m̃
their staggered versions,

(4.3) min
(ρ,m,ρ̃,m̃)

K(ρ, m) + ιC(ρ̃, m̃) + ιinterp((ρ, m), (ρ̃, m̃))

where ιC is the convex indicator function of the set

{(ρ̃, m̃) | div(ρ̃, m̃) = 0 and ρ̃(:,−1/2) = ρ0 and ρ̃(:, N − 1/2) = ρ1} .

and the function ιinterp is the convex indicator of the set {((ρ̃, m̃), (ρ, m)) | I(ρ̃, m̃) = (ρ, m)}. Now,
the goal is to apply convex optimization algorithms to the functional (4.3). Note that K is not a
smooth convex function, and the two other functions are convex indicators. These functions are
fortunately simple, in the sense that the proximal operator can be computed relatively easily. In
particular, one can use the decomposition G1 = K + ιC and G2 = ιinterp. In order to apply first
order algorithms, we need to compute the proximal operators associated with G1 and G2.

In general, prox(ιC) = pC the orthogonal projection on C. Let us detail the case of C = {(x, y) | y =
Ax} which is the case of ιinterp. Let us compute

(4.4) min
x

1
2
‖x− x0‖2 +

1
2
‖Ax− y0‖2 .

Optimality implies

(4.5) x− x0 + A∗(Ax− y0) = 0 ,

and thus

(4.6) x = (Id+A∗A)−1(A∗y0 + x0) .

It is possible to use LU factorization and separability in the case of the interpolation map to speed
up the computations.

The second projection we have to compute is the one associated with ιC. One can write

(4.7) A(ρ̃, m̃) =

(
div(ρ̃, m̃)
sBC(ρ̃, m̃)

)
=

(
0
b0

)
,

where sBC stands for the evaluation of the boundary values. Therefore,

(4.8) proxιC
(z) = arg min

x

1
2
|x− z|2 s.t. Ax =

(
0
b0

)
.

Using Lagrange multipliers, the optimality condition leads to

x = z + A∗p(4.9)

Ax = Az + AA∗p =

(
0
b0

)
.(4.10)
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which implies

(4.11) AA∗p =

(
0
b0

)
− Az .

Remark 7. A priori, AA∗ is not invertible since A∗ : RN 7→ RM with N > M. However, it is a symmetric
nonnegative matrix and it has a pseudo-inverse.

Indeed, AA∗ is invertible on (Ker(A∗))⊥ = Im(A) and v0 ∈ Im(A) implies p = (AA∗)−1(v0 −
Az) is uniquely defined. Then,

(4.12) x = z + A∗(AA∗)−1(v0 − Az) .

For this concrete application, we parameterize x = x0 + b0 and we use the notation pBC(x) = x
outside the boundaries and 0 on the boundaries. Then, with A = div ◦pBC we have

(4.13)
1
2
|x− pBC(x0)|2 + 〈p, Ax− Ab0〉

and get

(4.14) div pBC p∗BC div∗ p = Ab0 − Ax0 ,

which is a Poisson equation with Neumann boundary conditions.

We now compute the proximal operator of the kinetic energy ∑centered grid
1
2
|m|2

ρ . The first remark
is that the proximal operator is applied pointwise on the grid since this is a direct sum and it
amounts to computing the proximal operator of a 1D function. Just for sake of completeness, we
perform the computation below

(4.15) arg min
ρ,m

1
2τ
|m0 −m|2 + 1

2τ
|ρ− ρ0|2 +

1
2
|m|2

ρ
.

Variations in m and ρ lead to

1
2τ

(m−m0) +
m
ρ

= 0(4.16)

1
2τ

(ρ− ρ0) +
1
2
|m|2
ρ2 = 0 .(4.17)

These two equations imply the two following relations

(4.18) m =
m0

(1 + 2τ
ρ )

and

(4.19) (ρ + 2τ)2(ρ− ρ0)− τρ2|m0|2 = 0 .

By uniqueness of the proximal map, the argmin is the unique (if it exists) positive root of Equation
(4.19). Otherwise, the proximal is (ρ, m) = (0, 0). The computation of this 3rd order polynomial
root is given in close form and it has to be done pointwise on the grid.

Remark 8. In fact, |m|
2

ρ being one-homogeneous, the Legendre-Fenchel conjugate is the convex indicator

(4.20) C0 := {(α, β) | α +
1
2
|β|2 ≤ 0} .

Using these proximal maps, one can use primal-dual, Douglas-Rachford algorithms to solve the
problem.



SOME TOPICS IN NUMERICAL OPTIMAL TRANSPORT 25

REFERENCES
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APPENDIX A. A GLIMPSE AT CONVEX ANALYSIS AND OPTIMIZATION

In the following, we choose to consider the setting of Hilbert spaces instead of the more gen-
eral non-reflexive Banach spaces to benefit from the additional scalar product structure. However,
optimal transport needs the more general case to include the case of Radon measures.

A.1. Usual definitions.

Definition 7. Let C ⊂ E be a subset of the Banach space E, C is convex if for all x, y ∈ C, the
segment [x, y] is contained in C.

Of course the definition makes sense on a vector space but we need a topology on E for the
Hahn-Banach theorem.

Definition 8. A function f : E 7→ [−∞, ∞] is convex if its epigraph defined as

(A.1) epi( f ) def.
= {(x, y) : y ≥ f (x)} ⊂ E×R

is convex. The domain of f is dom( f ) def.
= {x : f (x) < +∞}.
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The function f is said proper if there exists x0 ∈ E such that f (x0) < +∞ and if f never takes
the value −∞. If f is proper, the definition of convexity reduces to the usual definition f (tx + (1−
t)y) ≤ t f (x) + (1− t) f (y) for every couple x, y ∈ E and t ∈ [0, 1]. Last, f is said strictly convex if
the previous inequality is strict for t ∈]0, 1[.

We want the function to be defined on the completed real line [−∞, ∞] in order to include con-
straints in the optimization problem.

Definition 9. A function f : E→ R is said lower semi-continuous (lsc) if for every xn → x

(A.2) f (x) ≤ lim
n→∞

f (xn) .

Example 18. Let C ⊂ E be a set. We denote by ιC : E 7→ R the indicator function of C defined as

(A.3) ιC(x) =

{
0 if x ∈ C ,
+∞ otherwise.

It convex iff C is convex, proper iff C is non-empty and lsc iff C is closed. This example is important in order
to formulate constraint optimization problems as unconstrained optimization. More precisely, we mean

(A.4) min
x∈C

f (x) = min
x∈C

f (x) + ιC(x) .

A direct consequence of the definition, we have the following fact,

Proposition 19 (Sup of convex function is convex). Let fi : E → R be convex functions indexed by a
set I. Then, supi∈I fi is a convex function.

As a result of the Hahn-Banach theorem,

Proposition 20 (Closed + convex→weakly closed). A closed (for the strong topology) convex set is also
closed for the weak topology (which differs in infinite dimension).

An important property that is constantly used and is a consequence of Hahn-Banach theorem is

Proposition 21. A convex lsc proper function is equal to the supremum of its affine minorants.

To get a more quantitative description of this affine minorant, we need the definition of convex
conjugate. Hereafter, we consider the case where E, E∗ is a dual pair. For instance, when E is a
Hilbert space or a finite dimensional space E = E∗. Optimal transport needs the more general case;
Indeed, if X is a compact domain in Rd, E = C(X, R) is a Banach space when endowed with the
sup norm and E∗ =M(X) is the set of Radon measures.

Definition 10 (Convex conjugate). Let f : E 7→ R be a function. The convex conjugate f ∗ : E∗ 7→ R

is defined as

(A.5) f ∗(p) = sup
x∈E
〈p, x〉 − f (x) .

Proposition 22. Let f : E 7→ R be a function, then f ∗∗ is the greatest lsc convex function below f . And, if
f is convex lsc proper, then f ∗∗ = f .

We now give three very important examples of convex functions that will be used heavily in
optimal transport formulation. The first example has already be implicitly given:

Definition 11. Let f : E 7→ R be a convex function and proper. The Bregman divergence of the
function is

(A.6) B f (y; x) := f (y)− 〈∇ f (x), y− x〉 − f (x) .

This function is convex wrt to y and nonnegative. If in addition f is strictly convex, B f (y; x) = 0 iff
y = x.

In general, Bregman divergences are not convex with respect to the second argument. There is
however one notable exception that we consider as an example.
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Example 23. Consider f (x) = x log(x), then B f (y; x) = y log(y)− (log(x) + 1)(y− x)− x log(x) =
y log(y/x)− y + x. Although it is easily convex in both x, y, we will give another general proof using the
perspective function defined below.

The second example is the Legendre transform of a convex set.

Proposition 24 (Positive one-homogeneous convex functions and convex indicator functions are in
convex duality). Let C be a convex set in E. Then, ι∗C is a convex, positively one-homogeneous function.
Reciprocally, given a convex, positively one-homogeneous function, its Legendre transform is the convex
indicator of a convex set.

Proof. Indeed, for a positive real λ, ι∗C(λp) = supx〈λp, x〉 − ιC(x). For a given x, whether ιC(x) =
+∞ and in this case 〈λp, x〉 − ιC(x) = λ(〈λp, x〉 − ιC(x)). In the other case, ιC(x) = 0, and here
again 〈λp, x〉 − ιC(x) = λ(〈λp, x〉) = λ(〈λp, x〉 − ιC(x)). Taking the supremum gives the first
result.

For the second point, we have consider remark that taking the supremum on x equals taking
the supremum in λx for positive λ and x. Remark that 〈p, λx〉 − f (λx) = λ(〈p, x〉 − f (x)), which
after optimization on λ gives two cases: whether there exists x such that 〈p, x〉 − f (x)) > 0 and
in this case, f ∗(p) = +∞, whether 〈p, x〉 − f (x)) ≤ 0 for every x. The set C of all p satisfying this
inequality for all x is convex and in this case, it implies that the optimization on x is obtained for
x = 0, in which case 〈p, 0〉 − f (0)) = 0. We have proven that f ∗ = ιC. �

The third example is the construction of a perspective function. For this new construction, we
need the notion of the recession function.

Definition 12 (Recession function). Let f : E 7→ (−∞,+∞] be a convex proper and lsc function. Its
recession function is defined by, for a given y such that f (y) < +∞,

(A.7) rec f (x) := lim
t→∞

f (y + tv)
t

.

It does not depend on the chosen y.

Definition 13 (Perspective function). Let f : E 7→ (−∞,+∞] be a convex proper and lsc function.
The perspective function Pf : E×R 7→ (−∞,+∞] is defined as

(A.8) Pf (x, s) =


s f (x/s) if s > 0 ,
rec f (x) if s = 0 ,
+∞ otherwise.

.

This function is convex, lsc and proper. It is also one homogeneous wrt (x, s).

The name perspective function maybe comes the fact that its graph wrt x gives different scaled
version of the graph of f .

Example 25. Some important examples are the following:

(1) f (x) = ‖x‖2, its recession function is +∞ and its perspective function is (x, s)→ ‖x‖2

s .
(2) e(x) = x log(x) − x + 1. In addition to being convex, e(0) = 1 and e(x) ≥ 0 since e(x) =

Bx log(x)(x, 1). Its perspective function is Pe(x, s) = x log(x/s)− x + s = Bx log(x)(x; s).
(3) Let h be a positively one-homogeneous convex function, then Pf (x, s) = f (x).

We now give the definition of the subgradient of a convex function which is the generalization
of the gradient.

Definition 14 (Subgradient). Let f : E → R be a convex function and x ∈ E. The subgradient of f
at point x is the set of elements in E∗ defined by

(A.9) ∂ f (x) def.
= {p ∈ E∗ : f (y) ≥ f (x) + 〈p, y− x〉 for all y ∈ E} .
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Remark 9. If f is continuous at point x0 then the subgradient at this point is non-empty, and also at every
point in the interior of dom( f ). The subdifferential can be empty at some points. In general, if E is a complete
Banach space and f is convex lsc and proper, the set of points where ∂ f is non-empty is dense in dom( f ).

Proposition 26. The definition of subgradient implies, exchanging the order of x, y in the inequality (A.9)
and adding the two inequalities

(A.10) 〈∂ f (x)− ∂ f (y), x− y〉 ≥ 0 ,

with a little abuse of notations since ∂ f (x) and ∂ f (y) denote any element in these sets.

Proposition 27 (Legendre-Fenchel identity). Let f be a convex function. Then, the three statements are
equivalent

• f (x) + f ∗(p) = 〈p, x〉 ,
• p ∈ ∂ f (x),
• x ∈ ∂ f ∗(p).

Remark 10. If f and f ∗ are differentiable, then the Legendre-Fenchel identity simply says that∇ f ◦∇ f ∗ =
IdE∗ and ∇ f ∗ ◦ ∇ f = IdE, which is sometimes a useful property to manipulate optimality formulas.

Definition 15 (Strong convexity). Let λ > 0 be a positive real. A convex function f is λ strongly
convex if the function x 7→ f (x)− λ

2 ‖x‖2 is convex.

Proposition 28 (Strong convexity of f and smoothness of f ∗). A convex function f is λ strongly convex
iff f ∗ is C1 with Lipschitz gradient with constant 1/λ. Also, the subgradient satisfies

(A.11) 〈∇ f ∗(x)−∇ f ∗(y), x− y〉 ≥ λ‖∇ f ∗(x)−∇ f ∗(y)‖2 ,

∇ f is a co-coercive monotone operator.

A.2. Elementary convex optimization.

Definition 16 (PL condition). Let (M, g) be a Riemannian manifold (possibly of infinite dimension)
and F : M 7→ R which is C1 with at least one global minimizer x? ∈ M. Then, F satisfies a Polyak-
Lojasiewicz inequality if

(A.12) F(x)− F(x?) ≤ C‖∇F(x)‖2

for a positive constant C.

Remark that if the PL condition implies that every local minimizer is a global one since∇F(x) =
0 implies F(x)− F(x?) = 0. Note that the PL condition can be weakened to a local PL condition
by making the constant C dependant on a given ball C(r). Such functions also satisfies that local
minimizers are global.

Definition 17 (Gradient flow). Let f : M 7→ R be a C1 function. The gradient flow associated with
f is

(A.13) ẋ = −∇ f (x) ,

with initial value x(0) = x0 ∈ M.

Interestingly, this notion can be defined using weaker formulations, in particular in metric space
settings, see Gradient flows, Ambrosio, Gigli and Savaré. Moreover, the PL condition only requires
to measure the norm of the gradient, which is well defined in the optimal transport context.

Proposition 29. If F satisfies the PL condition, then the (continuous) gradient flow satisfies

(A.14) F(x(t))− F(x?) ≤ e−t/C(F(x0)− F(x?)) ,

where x(t) satisfies ẋ = −F(x(t)).
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Proof.

(A.15)
d
dt
(F(x(t))− F(x?)) = −‖∇F(x(t))‖2 ≤ − 1

C
(F(x(t))− F(x?)) ,

which implies the result by Grönwall’s lemma. �

Note that this condition does not need any convexity, neither on the function nor on the op-
timization set since it applies to Riemannian manifolds. Obviously, the task is to show that the
PL condition is satisfied. A sufficient condition to ensure it is to be in a convex optimization set-
ting.

Proposition 30. If F : H 7→ R is λ-strongly convex, then F satisfies the PL condition for the constant 1
2λ .

Proof. Write the strong convexity inequality at point x, so that

(A.16) F(x?)− F(x) ≥ 〈∇F(x), x? − x〉+ λ

2
‖x− x?‖2 .

Reversing the sign of the inequality and using the standard inequality 〈x, y〉 ≤ 1
2α‖x‖2 + α

2‖y‖2 for
α = λ, we get

(A.17) F(x)− F(x?) ≤
1

2λ
‖∇F(x)‖2 +

λ

2
‖x− x?‖2 − λ

2
‖x− x?‖2 =

1
2λ
‖∇F(x)‖2 .

�

Remark that the proof also holds on a Riemannian manifold, so we get:

Corollary 31. A λ-strongly convex function on a Riemannian manifold (M, g) satisfies the PL condition.

Definition 18 (Explicit gradient descent). A time-discrete counterpart of the gradient flow is an
explicit formulation (the gradient is computed at the current point) with constant step size gradient
descent, for τ > 0,

(A.18) xk+1 = xk − τ∇ f (xk) .

Proposition 32. If f is convex and C1 with Lipschitz gradient of constant L, then the explicit gradient
descent converges if τ < 2/L under the additional assumptions that f bounded below with bounded level
sets.

Proof. Only assuming f C1 with Lipschitz gradient of constant L, implies that

(A.19) f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ L/2‖y− x‖2 ,

and that the sequence of values f (xk) is decreasing since for y = xk+1 and y = xk, one has

f (xk+1) ≤ f (xk) + τ〈∇ f (xk),∇ f (xk)〉+ Lτ2/2‖∇ f (xk)‖2(A.20)

≤ τ(−1 + Lτ/2)‖∇ f (xk)‖2 .(A.21)

Therefore, if τ < 2/L, f (xk+1) < f (xk). If (xk)k∈N has an accumulation, which can be obtained
under mild assumptions on the function f (as mentioned for instance bounded level sets in Rd),
then this accumulation point is a critical point of f . If f is convex, it is a global minimum and the
sequence converges to this accumulation point since the map x 7→ x− τ∇ f (x) can be proven to be
a weak contraction and thus the distance to this accumulation point is decreasing. �

If the objective function f is not C1 with gradient L Lipschitz, it is possible to try to apply implicit
gradient descent instead of explicit which iterates xk+1 = xk − τ∇ f (xk).

Definition 19 (Implicit gradient descent and variational formulation). The implicit gradient scheme
with constant step size gradient descent, for τ > 0,

(A.22) xk+1 = xk − τ∇ f (xk+1) .
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This time-discrete scheme has a variational formulation,

(A.23) xk+1 = arg min
1

2τ
‖x− xk‖2 + f (x) ,

which is uniquely defined if the function f is convex, proper and lsc (in this case, f has an affine
minorant and the minimized function is coercive).

Remark that the variational formulation might still be convex even when f is not convex for τ

sufficiently small since the convexity of 1
2τ ‖x − xk‖2 can be sufficiently strong to compensate the

lack of convexity of f . This argument does not apply when f has some (concave) singularity, e.g.
f (x) = −‖x‖.

Proposition 33. The so-called Moreau-Yosida regularization of f is fτ(y)
def.
= minx

1
2τ ‖x − y‖2 + f (x)

and it is C1 with 1/τ Lipschitz gradient. The explicit gradient scheme for fτ is the implicit gradient scheme
for f and consequently, the implicit gradient descent converges independently of the choice of τ.

Definition 20. Let f be a convex function, proper and lsc. The proximal operator is defined as

(A.24) proxτ f (x) = arg min
y

1
2τ
‖x− y‖2 + f (y) .

As said above, proxτ f (x) is uniquely defined and satisfies

(A.25) proxτ f (x)− x + τ∂ f (x) 3 0 .

The notation (Id+τ∂ f )−1x = proxτ f (x) will be used.

In particular, if it is reasonably cheap to compute the proximal operator of f , then the implicit
gradient descent xk+1 = proxτ f (xk) can be used. Such functions are called simple. Therefore, it is
interesting to know that computing the proximal map of a function is as difficult as computing the
proximal map of its convex conjugate.

Proposition 34. Let f be a convex, proper and lsc function. Then, it holds

(A.26) x = proxτ f (x) + τ prox 1
τ f ∗(

1
τ

x) ,

known as Moreau’s identity.

Let us be interested in the following optimization problem of a function F (x) that can be written
as the minimization of the sum

(A.27) min
x

f (x) + g(x) ,

where f is simple function and g is a C1 function with L Lipschitz gradient. At a critical point x∗,
one has

(A.28) f (x) + g(x) ≤ f (x) + g(x∗) + 〈∇g(x∗), x− x∗〉+
L
2
‖x− x∗‖2 ,

and therefore, it is natural to minimize the right-hand side which gives the composition of a prox-
imal operator and a gradient step for g, since 〈∇g(x∗), x − x∗〉 + L

2 ‖x − x∗‖2 = L
2 (‖x − x∗ +

1
L∇g(x∗)‖2 − 1

L2 ‖∇g(x∗)‖2),

(A.29) xk+1 = prox(1/L) f (xk −
1
L
∇g(xk)) ,

This minimization algorithm is called forward-backward, it is the composition of an explicit gra-
dient step on g followed by an implicit gradient step of f . The convergence of this algorithm can
be proven for a general step size τ ≤ 1/L and the rate of convergence is in 1/k, more precisely
F (xk)−F (x∗) ≤ 1

2τk‖x∗ − x0‖2. This algorithm has an accelerated version named FISTA.
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The Benamou and Brenier formula of the optimal transport problem, as described later, does not
take the form of the function (A.27). In fact, it will be formulated as the minimization of the sum of
two functions which are ”simple”. We are now interested in the minimization problem

(A.30) min
x

f (Kx) + g(x) ,

where K is a bounded linear operator, f and g are convex, lsc and proper functions. In order to
present the primal-dual algorithms, we now compute the dual problem associated to (A.30).

min
x

max
p
〈p, Kx〉 − f ∗(p) + g(x) ≥ max

p
min

x
〈p, Kx〉 − f ∗(p) + g(x)(A.31)

≥ max
p
−g∗(−K∗p) + f ∗(p) ,(A.32)

Equality between the l.h.s and r.h.s. is satisfied under mild assumptions. In the case of non-reflexive
Banach space, we recall a central theorem in convex analysis, the Fenchel-Rockafellar theorem.

Theorem 35 (Fenchel-Rockafellar). Let (E, E∗) and (F, F∗) be two topological dual pairs, L : E 7→ F be
a continuous linear map and denote L∗ : F∗ 7→ E∗ its adjoint. Let f : E 7→ R and g : F 7→ R be two proper,
convex and lower semicontinuous functions. Under the following condition if there exists x ∈ Dom( f ) such
that g is continuous at Ax, the following equality holds

(A.33) sup
x∈E
− f (−x)− g(Lx) = min

p∈F∗
f ∗(L∗p) + g∗(p) .

In case there exists a maximizer x ∈ E, then there exists p ∈ F∗ such that Lx ∈ ∂g∗(p) and L∗p ∈ ∂ f (−x).

Note that the conclusion of the theorem has a dissymmetry, the minimum on the right-hand side
being attained. Let us give an example of application with standard optimal transport: We consider
a compact domain X ⊂ Rd, ρ1, ρ2 ∈ M1(X) two probability measures. On the space X × X, we
consider the space of nonnegative Radon measures.

A.3. Primal-dual. The problem of interest consists in the minimization of

(A.34) inf
x

f (Kx) + g(x)

where f , g are convex, lsc and simple, which is the case we are interested in for optimal transport.
In the above formulation, replace f with ( f ∗)∗(x) = maxp〈p, Kx〉 − f ∗(p) to obtain

(A.35) inf
x

max
p
〈p, Kx〉 − f ∗(p) + g(x) .

The idea of primal-dual algorithm is to use this formulation by alternating optimization steps in x
and p. More precisely, alternating an implicit step in x and an implicit step in p. For instance, the
optimality condition on x reads

(A.36) 0 ∈ K∗p + ∂g(x)

which can be alternatively rewritten as

(A.37) x− τK∗p ∈ (Id+τ∂g)(x) .

Writing a similar equation on p leads to

x ← (Id+τ1∂g)−1(x− τ1K∗p)(A.38)

p← (Id+τ2∂ f ∗)(p + τ2Kx) ,(A.39)

where τ1, τ2 are the implicit gradient stepsizes. There exist different formulations and extensions
of this algorithm. For instance, the primal-dual scheme

xk+1 ← proxτ1g(xk − τ1K∗p)(A.40)

pk+1 ← proxτ2 f ∗(pk + τ2K(2xk+1 − xk)) ,(A.41)

whose convergence is guaranteed if τ1τ2L2 ≤ 1, where ‖K‖ ≤ L. If more regularity on the objective
function is available, acceleration of this algorithm can be used.
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A.4. Augmented Lagrangian and ADMM. Hereafter, the objective functions are of the type

(A.42) min
Ax+By=b

f (x) + g(y) .

Note that this formulation encompasses the functions of type f (x) + g(Kx) via a correct choice of
the linear maps A, B and the vector b. The idea of such methods is to add a Lagrange multiplier z
and a quadratic penalty on the constraint with coefficient γ,

(A.43) min
x,y

sup
z

f (x) + g(y) + 〈z, b− Ax− By〉+ γ

2
‖b− Ax− By‖2 .

Then, the ADMM algorithm reads

xk+1 ← arg min
x

f (x)− 〈zk, Ax〉+ γ

2
‖b− Ax− Byk‖2(A.44)

yk+1 ← arg min
y

g(y)− 〈zk, By〉+ γ

2
‖b− Axk+1 − By‖2(A.45)

zk+1 ← zk + γ(b− Axk+1 − Byk+1) .(A.46)

The last step of this algorithm is a dual ascent step and its gradient is 1
γ Lipschitz.

A.5. Douglas-Rachford algorithm. This algorithm is designed for the minimization of

(A.47) min
x

g(x) + f (x)

one writes

xk+1 ← proxτ1g(xk − τ1 pk)(A.48)

pk+1 ← proxτ2 f ∗(pk + τ2(2xk+1 − xk)) ,(A.49)

with τ1τ2 ≤ 1 to ensure convergence. Then, one has, using τ1τ2 = 1 and Moreau’s identity on
proxτ f ∗ ,

xk+1 ← proxτg(vk)(A.50)

vk+1 ← vk − xk+1 + proxτ f (2xk+1 − vk) .(A.51)

APPENDIX B. STRONG CONVEXITY OF SEMI-DUAL SINKHORN FUNCTIONAL

In this section, we study convexity properties of the following functional:

(B.1) Sλ( f ) = 〈 f , µ〉 − λ〈log
(∫

e
f−c
λ dµ

)
, ν〉s ,

which is the dual objective function of the entropic regularized optimal transport optimized on the
potential associated with the measure ν. The first derivative reads

(B.2) Sλ( f )(δ f ) = 〈δ f , µ〉 − 〈δ f ,
∫ e

f−c
λ∫

e
f−c
λ dµ

dν〉 .

Therefore, the gradient of Sλ is

(B.3) ∇Sλ( f ) = µ−
∫ e

f−c
λ∫

e
f−c
λ dµ

dν .

It is convenient to introduce the measure f [ν] :=
∫ e

f−c
λ∫

e
f−c
λ dµ

dν to rewrite the gradient as

(B.4) ∇Sλ( f ) = µ− f [ν] .
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The Hessian reads

(B.5) 〈δ f ,∇2Sλ( f )δ f 〉 = 1
λ
〈(δ f )2,

∫ e
f−c
λ∫

e
f−c
λ dµ

ν〉 − 1
λ
〈δ f ,

∫ e
f−c
λ∫

e
f−c
λ dµ

ν〉2 .

which can be rewritten as

(B.6) 〈δ f ,∇2Sλ( f )δ f 〉 = 1
λ

Var f [ν](δ f ) .

Since the potentials are defined up to an additive constant, we can deduce at least with no quanti-
tative bounds that for all f ∈ Lip(X) such that Lip( f ) ≤ M,

(B.7) Var f [ν](δ f ) ≥ cste‖δ f ‖2
osc .

since the quantity Var f [ν](δ f ) achieves its lower bound on the compact subspace C(X)/R of Lips-
chitz functions. However, the constant needs to be estimated quantitatively.


