Quantitative Stability of the Pushforward Operation by an Optimal Transport Map

Alex Delalande
Joint work with Guillaume Carlier and Quentin Mérigot

January 2024

Introduction

Quadratic Optimal Transport problem (Monge, 1781; Kantorovich, 1942):

- Given $\rho, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, solve

$$
\inf _{\gamma \in \Gamma(\rho, \mu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} \mathrm{~d} \gamma(x, y)
$$

where $\Gamma(\rho, \mu)=\left\{\gamma \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \forall A \subset \Omega, \gamma\left(A \times \mathbb{R}^{d}\right)=\rho(A), \gamma\left(\mathbb{R}^{d} \times A\right)=\mu(A)\right\}$.

[^0]$\operatorname{map} T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfying $T \neq \rho=\mu$, characterized by $T=\nabla \phi$ with ϕ convex

Introduction

Quadratic Optimal Transport problem (Monge, 1781; Kantorovich, 1942):

- Given $\rho, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, solve

$$
\inf _{\gamma \in \Gamma(\rho, \mu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} \mathrm{~d} \gamma(x, y)
$$

where $\Gamma(\rho, \mu)=\left\{\gamma \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid \forall A \subset \Omega, \gamma\left(A \times \mathbb{R}^{d}\right)=\rho(A), \gamma\left(\mathbb{R}^{d} \times A\right)=\mu(A)\right\}$.

- Optimal γ always exists and is unique if ρ is absolutely continuous.

Theorem (Brenier, 1987): If ρ is absolutely continuous, solution is induced by a unique $\operatorname{map} T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfying $T_{\#} \rho=\mu$, characterized by $T=\nabla \phi$ with ϕ convex.

Introduction

- 2-Wasserstein distance between ρ and μ :

$$
\mathrm{W}_{2}(\rho, \mu):=\left(\inf _{\gamma \in \Gamma(\rho, \mu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} \mathrm{~d} \gamma(x, y)\right)^{1 / 2}
$$

- 2 -Wasserstein space: $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$.
\rightarrow Geodesic distance, interpolations, barycenters, gradient flows...
\rightarrow Riemannian interpretation of $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$ (Otto, 2001; Ambrosio,
Gigli, Savaré, 2004).

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	
Geodesic distance	
Tangent space	
Inverse exponential map	
Exponential map	

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right)$
Geodesic distance	
Tangent space	
Inverse exponential map	
Exponential map	

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c.c. }}\left(\mathbb{R}^{d}\right)$
Geodesic distance	$\mathrm{W}_{2}(\mu, \nu)$
Tangent space	
Inverse exponential map	
Exponential map	

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), \mathrm{W}_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c. } . ~}\left(\mathbb{R}^{d}\right)$
Geodesic distance	$\mathrm{W}_{2}(\mu, \nu)$
Tangent space	$\mathcal{T}_{\rho} \mathcal{P}_{2}^{\text {a.c. }} \cdot\left(\mathbb{R}^{d}\right)=\overline{\{\lambda(\nabla \phi-\mathrm{id}) \mid \lambda>0, \phi \text { convex }\}} \mathrm{L}^{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)}$
Inverse exponential map	$\exp _{\rho}^{-1}(\mu)=\nabla \phi \mu-i d \in \mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
Exponential map	$\exp _{(}(\nabla \phi-\mathrm{id})=(\nabla \phi)+\rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), \mathrm{W}_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c. } . ~}\left(\mathbb{R}^{d}\right)$
Geodesic distance	$\mathrm{W}_{2}(\mu, \nu)$
Tangent space	$\mathcal{T}_{\rho} \mathcal{P}_{2}^{\text {P.c. } . ~}\left(\mathbb{R}^{d}\right)=\overline{\{\lambda(\nabla \phi-\mathrm{id}) \mid \lambda>0, \phi \text { convex }\}}$
Lnverse exponential map $\left(\rho, \mathbb{R}^{d}\right)$	
	$\exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d$ where $\phi_{\mu} \in \arg \min _{\phi \text { convex }}\left\langle\langle\mid \rho\rangle+\left\langle\mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right.\right.$,

Exponential map

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), \mathrm{W}_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c. } . ~}\left(\mathbb{R}^{d}\right)$
Geodesic distance	$\mathrm{W}_{2}(\mu, \nu)$
Tangent space	$\mathcal{T}_{\rho} \mathcal{P}_{2}^{\text {a.c.c. }}\left(\mathbb{R}^{d}\right)=\overline{\{\lambda(\nabla \phi-\mathrm{id}) \mid \lambda>0, \phi \text { convex }\}}$
Lnverse exponential map	$\left.\exp _{\rho}^{-1}(\mu)=\nabla \mathbb{R}^{d}\right)$ where $\phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle$
Exponential map	$\exp _{\rho}(\nabla \phi-\mathrm{id})=(\nabla \phi)_{\#}\left(\mathbb{R}^{d}\right)$,

Introduction

- Riemannian interpretation of $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), \mathrm{W}_{2}\right)$:

$$
\mathrm{W}_{2}(\rho, \mu)=\|\nabla \phi-\mathrm{id}\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)} \quad \forall \phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { convex and s.t. }(\nabla \phi)_{\#} \rho=\mu .
$$

Point	$\mu \in \mathcal{P}_{2}^{\text {a.c.c. }}\left(\mathbb{R}^{\text {d }}\right)$
Geodesic distance	$\mathrm{W}_{2}(\mu, \nu)$
Tangent space	$\mathcal{T}_{\rho} \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right)=\overline{\{\lambda(\nabla \phi-\mathrm{id}) \mid \lambda>0, \phi \text { convex }\}^{\mathrm{L}}{ }^{2}\left(\rho, \mathbb{R}^{d}\right)}$
Inverse exponential map	$\begin{aligned} & \exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d \in \mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \\ & \text { where } \phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle \end{aligned}$
Exponential map	$\exp _{\rho}(\nabla \phi-\mathrm{id})=(\nabla \phi)_{\#} \rho \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

\rightarrow Tangent vectors are directed by gradients of convex functions.

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
On $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$, what is the regularity of the map

$$
\rho \mapsto(\nabla \phi)_{\# \rho} \quad ?
$$

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
On $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$, what is the regularity of the map

$$
\rho \mapsto(\nabla \phi)_{\# \rho} \quad \boldsymbol{?}
$$

I.e., can we have bounds of the type

$$
\forall \rho, \tilde{\rho} \in \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), \quad \mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} \quad ?
$$

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
On $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$, what is the regularity of the map

$$
\rho \mapsto(\nabla \phi)_{\# \rho} \quad \boldsymbol{?}
$$

I.e., can we have bounds of the type

$$
\forall \rho, \tilde{\rho} \in \mathcal{P}_{2}^{\text {a.c. }} \cdot\left(\mathbb{R}^{d}\right), \quad \mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} \quad ?
$$

More generally, let $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\left\{\begin{array} { l }
{ (p _ { 1 }) _ { \# } \gamma = \rho , } \\
{ \operatorname { s p t } (\gamma) \subset \partial \phi , }
\end{array} \quad \left\{\begin{array}{l}
\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}, \\
\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi .
\end{array}\right.\right.
$$

Problem statement

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{\infty\}$ be a fixed, proper and continuous convex function.
On $\left(\mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right), W_{2}\right)$, what is the regularity of the map

$$
\rho \mapsto(\nabla \phi)_{\#} \rho \quad ?
$$

I.e., can we have bounds of the type

$$
\forall \rho, \tilde{\rho} \in \mathcal{P}_{2}^{\text {a.c. }} \cdot\left(\mathbb{R}^{d}\right), \quad \mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} \quad ?
$$

More generally, let $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\gamma, \tilde{\gamma} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ (p _ { 1 }) _ { \# } \gamma = \rho , } \\
{ \operatorname { s p t } (\gamma) \subset \partial \phi , }
\end{array} \quad \left\{\begin{array}{l}
\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}, \\
\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi
\end{array}\right.\right. \\
& \rightarrow \mathrm{W}_{2}\left(\left(p_{2}\right)_{\# \gamma} \gamma,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} \quad ?
\end{aligned}
$$

Motivations

1. Numerical resolution of optimal transport

- By Kantorovich's duality, with $\psi^{*}=\sup _{y}\langle\cdot \mid y\rangle-\psi(y)$:

$$
\min _{\gamma \in \Gamma(\rho, \mu)} \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y) \equiv \min _{\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}} \underbrace{\int \psi^{*} \mathrm{~d} \rho}_{:=K(\psi)}+\int \psi \mathrm{d} \mu
$$

\rightarrow Approximation of $\nabla K(\psi)$:

- Quality of approximation?

Motivations

1. Numerical resolution of optimal transport

- By Kantorovich's duality, with $\psi^{*}=\sup _{y}\langle\cdot \mid y\rangle-\psi(y)$:

$$
\min _{\gamma \in \Gamma(\rho, \mu)} \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y) \equiv \min _{\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}} \underbrace{\int \psi^{*} \mathrm{~d} \rho}_{:=K(\psi)}+\int \psi \mathrm{d} \mu .
$$

- Gradient of K :

$$
\nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\# \rho} \rho .
$$

- Approximation of $\nabla K(\psi)$
- Quality of approximation?

Motivations

1. Numerical resolution of optimal transport

- By Kantorovich's duality, with $\psi^{*}=\sup _{y}\langle\cdot \mid y\rangle-\psi(y)$:

$$
\min _{\gamma \in \Gamma(\rho, \mu)} \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y) \equiv \min _{\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}} \underbrace{\int \psi^{*} \mathrm{~d} \rho}_{:=K(\psi)}+\int \psi \mathrm{d} \mu .
$$

- Gradient of K :

$$
\nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\#} \rho .
$$

- Approximation of $\nabla K(\psi)$:

$$
\tilde{\rho}:=\frac{1}{N} \sum_{i} \delta_{x_{i}} \rightarrow \widetilde{\nabla K}(\psi):=-\frac{1}{N} \sum_{i} \delta_{y_{i}}, \text { where } y_{i} \in \partial \psi^{*}\left(x_{i}\right) .
$$

Motivations

1. Numerical resolution of optimal transport

- By Kantorovich's duality, with $\psi^{*}=\sup _{y}\langle ||y\rangle-\psi(y)$:

$$
\min _{\gamma \in \Gamma(\rho, \mu)} \int\|x-y\|^{2} \mathrm{~d} \gamma(x, y) \equiv \min _{\psi:: \mathbb{R}^{d} \rightarrow \mathbb{R}} \underbrace{\int \psi^{*} \mathrm{~d} \rho}_{:=K(\psi)}+\int \psi \mathrm{d} \mu .
$$

- Gradient of K :

$$
\nabla K(\psi)=-\left(\nabla \psi^{*}\right)_{\# \rho} \rho
$$

- Approximation of $\nabla K(\psi)$:

$$
\tilde{\rho}:=\frac{1}{N} \sum_{i} \delta_{x_{i}} \rightarrow \widetilde{\nabla K}(\psi):=-\frac{1}{N} \sum_{i} \delta_{y_{i}}, \text { where } y_{i} \in \partial \psi^{*}\left(x_{i}\right) .
$$

- Quality of approximation?

$$
\mathrm{W}_{2}(\nabla K(\psi), \widetilde{\nabla K}(\psi)) \text { vs. } \mathrm{W}_{2}(\rho, \tilde{\rho}) ?
$$

Motivations

2. Linearized Optimal Transport

- Recall that

$$
\exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d \text { where } \phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle
$$

- Linearized/generalized geodesics:

Motivations

2. Linearized Optimal Transport

- Recall that

$$
\exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d \text { where } \phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle
$$

\checkmark For a fixed $\rho \in \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right)$, distance in $\mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is

$$
\mathrm{W}_{2, \rho}(\mu, \nu):=\left\|\nabla \phi_{\mu}-\nabla \phi_{\nu}\right\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)}
$$

\rightarrow Linearized Optimal Transport distance (Wang et al., 2013)

Motivations

2. Linearized Optimal Transport

- Recall that

$$
\exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d \text { where } \phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle
$$

- For a fixed $\rho \in \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right)$, distance in $\mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is

$$
\mathrm{W}_{2, \rho}(\mu, \nu):=\left\|\nabla \phi_{\mu}-\nabla \phi_{\nu}\right\|_{\mathrm{L}^{2}\left(\rho, \mathbb{R}^{d}\right)}
$$

\rightarrow Linearized Optimal Transport distance (Wang et al., 2013)

- Linearized/generalized geodesics:

Motivations
2. Linearized Optimal Transport

- Recall that

$$
\exp _{\rho}^{-1}(\mu)=\nabla \phi_{\mu}-i d \text { where } \phi_{\mu} \in \arg \min _{\phi \text { convex }}\langle\phi \mid \rho\rangle+\left\langle\phi^{*} \mid \mu\right\rangle .
$$

- For a fixed $\rho \in \mathcal{P}_{2}^{\text {a.c. }}\left(\mathbb{R}^{d}\right)$, distance in $\mathcal{T}_{\rho} \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is

$$
\mathrm{W}_{2, \rho}(\mu, \nu):=\left\|\nabla \phi_{\mu}-\nabla \phi_{\nu}\right\|_{L^{2}\left(\rho, \mathbb{R}^{d}\right)} .
$$

\rightarrow Linearized Optimal Transport distance (Wang et al., 2013)

- Linearized/generalized geodesics:

$$
\mu_{t}=\left((1-t) \nabla \phi_{\mu_{0}}+t \nabla \phi_{\mu_{1}}\right)_{\#} \rho
$$

- Approximation with $\tilde{\mu_{t}}=\left((1-t) \nabla \phi_{\mu_{0}}+t \nabla \phi_{\mu_{1}}\right)_{\#} \tilde{\rho}$.

$$
\mathrm{W}_{2}\left(\mu_{t}, \tilde{\mu_{t}}\right) \text { vs. } \mathrm{W}_{2}(\rho, \tilde{\rho}) ?
$$

Motivations

3. Generative modelling with Input Convex Neural Networks

> Input Convex Neural Network (Amos et al., 2017):
> Neural network $\phi_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, parameterized by $\theta \in \Theta$, whose architecture constraints $x \mapsto \phi_{\theta}(x)$ to be convex.

$>$ In practice $\nless, \nless \rightarrow$ statistical approximations $\hat{\rho}, \hat{\mu}$:

Motivations

3. Generative modelling with Input Convex Neural Networks

Input Convex Neural Network (Amos et al., 2017):

Neural network $\phi_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, parameterized by $\theta \in \Theta$, whose architecture constraints $x \mapsto \phi_{\theta}(x)$ to be convex.

- Generative modelling with ICNNs:

$$
\min _{\theta} \mathcal{L}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \rho, \mu\right) .
$$

- Empirical risk minimization bounds?

Motivations

3. Generative modelling with Input Convex Neural Networks

Input Convex Neural Network (Amos et al., 2017):

Neural network $\phi_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, parameterized by $\theta \in \Theta$, whose architecture constraints $x \mapsto \phi_{\theta}(x)$ to be convex.

- Generative modelling with ICNNs:

$$
\min _{\theta} \mathcal{L}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \rho, \mu\right) .
$$

- In practice $\not \chi^{\prime} 火 \rightarrow$ statistical approximations $\hat{\rho}, \hat{\mu}$:

$$
\min _{\theta} \hat{\mathcal{L}}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \hat{\rho}, \hat{\mu}\right) .
$$

Motivations

3. Generative modelling with Input Convex Neural Networks

Input Convex Neural Network (Amos et al., 2017):

Neural network $\phi_{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, parameterized by $\theta \in \Theta$, whose architecture constraints $x \mapsto \phi_{\theta}(x)$ to be convex.

- Generative modelling with ICNNs:

$$
\min _{\theta} \mathcal{L}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \rho, \mu\right) .
$$

- In practice $\nless 火, ~ \nrightarrow$ statistical approximations $\hat{\rho}, \hat{\mu}$:

$$
\min _{\theta} \hat{\mathcal{L}}(\theta) \approx \mathrm{W}_{2}\left(\left(\nabla \phi_{\theta}\right)_{\#} \hat{\rho}, \hat{\mu}\right) .
$$

- Empirical risk minimization bounds?

$$
|\hat{\mathcal{L}}(\theta)-\mathcal{L}(\theta)| \text { vs. } \mathrm{W}_{2}(\rho, \hat{\rho})+\mathrm{W}_{2}(\mu, \hat{\mu}) ?
$$

A positive result

Proposition:

Let $\alpha \in(0,1)$ and let $\phi \in \mathcal{C}^{1, \alpha}\left(\mathbb{R}^{d}\right)$ convex. Then for any $\rho, \tilde{\rho} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,(\nabla \phi)_{\#} \tilde{\rho}\right) \leq\|\nabla \phi\|_{\mathcal{C}^{0}, \alpha} \mathrm{~W}_{2}(\rho, \tilde{\rho})^{\alpha} .
$$

Negative results

- No assumption on $\rho, \tilde{\rho}$:

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \tilde{\gamma}\right)=2 \text { while } \mathrm{W}_{2}(\rho, \tilde{\rho})=0 .
$$

Negative results

- Assume ρ is absolutely continuous and $\rho \leq M<+\infty$:

$$
\mathrm{W}_{2}\left(\left(p_{2}\right)_{\#} \gamma,\left(p_{2}\right)_{\#} \gamma^{\varepsilon}\right) \sim \mathrm{W}_{2}\left(\rho, \rho^{\varepsilon}\right)^{1 / 3}
$$

Main result

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $\phi: \Omega \rightarrow \mathbb{R}$ convex and R-Lipschitz continuous.
- Let $M \in(0,+\infty)$.

Main result

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
\rightarrow Let $\phi: \Omega \rightarrow \mathbb{R}$ convex and R-Lipschitz continuous.
- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial \phi$,

$$
\mathrm{W}_{2}\left((\nabla \phi)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, M, R) \mathrm{W}_{2}(\rho, \tilde{\rho})^{1 / 3}
$$

where $C(d, M, R) \sim d^{2} 2^{8(d+1)}\left(1+\beta_{d}\right)(1+M)(1+R)^{4+d}$.

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha}
$$

Proof in dimension 1: Σ_{r} Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha}
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$.

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha} .
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$. Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

$$
\alpha \leq \sum \phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i}-\eta\right)
$$

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha}
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$. Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

$$
N \alpha \leq \sum_{i=1}^{N} \phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i}-\eta\right)
$$

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha}
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$. Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

$$
\begin{aligned}
N \alpha & \leq \sum_{i=1}^{N} \phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i}-\eta\right) \\
& =\phi^{\prime}\left(x_{N}+\eta\right)-\phi^{\prime}\left(x_{1}-\eta\right)+\sum_{i=1}^{N-1} \underbrace{\phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i+1}-\eta\right)}_{\leq 0 \text { since } x_{i}+\eta<x_{i+1}-\eta \text { and } \phi^{\prime} \nearrow}
\end{aligned}
$$

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha} .
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$. Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

$$
\begin{aligned}
N \alpha & \leq \sum_{i=1}^{N} \phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i}-\eta\right) \\
& =\phi^{\prime}\left(x_{N}+\eta\right)-\phi^{\prime}\left(x_{1}-\eta\right)+\sum_{i=1}^{N-1} \underbrace{\phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i+1}-\eta\right)}_{\leq 0 \text { since } x_{i}+\eta<x_{i+1}-\eta \text { and } \phi^{\prime} \nearrow} \\
& \leq \phi^{\prime}\left(x_{N}+\eta\right)-\phi^{\prime}\left(x_{1}-\eta\right)
\end{aligned}
$$

Key ingredient

Covering number of near-singular sets of convex functions

$$
\Sigma_{\eta, \alpha}:=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(B(x, \eta)) \geq \alpha\}
$$

Theorem: For all $\alpha, \eta>0$,

$$
\mathcal{N}\left(\Sigma_{\eta, \alpha}, \eta\right) \lesssim \frac{R^{d-1}}{\eta^{d-1}} \frac{\operatorname{Lip}(\phi)}{\alpha} .
$$

Proof in dimension 1: $\Sigma_{\eta, \alpha}:=\left\{x \in[-R, R] \mid \phi^{\prime}(x+\eta)-\phi^{\prime}(x-\eta) \geq \alpha\right\}$. Let $\left\{x_{i}\right\}_{1 \leq i \leq N}$ be an ordered η-packing of $\Sigma_{\eta, \alpha}$. Then

$$
\begin{aligned}
N \alpha & \leq \sum_{i=1}^{N} \phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i}-\eta\right) \\
& =\phi^{\prime}\left(x_{N}+\eta\right)-\phi^{\prime}\left(x_{1}-\eta\right)+\sum_{i=1}^{N-1} \underbrace{\phi^{\prime}\left(x_{i}+\eta\right)-\phi^{\prime}\left(x_{i+1}-\eta\right)}_{\leq 0 \text { since } x_{i}+\eta<x_{i+1}-\eta \text { and } \phi^{\prime} \nearrow} \\
& \leq \phi^{\prime}\left(x_{N}+\eta\right)-\phi^{\prime}\left(x_{1}-\eta\right) \\
& \leq 2 \operatorname{Lip}(\phi) .
\end{aligned}
$$

Comparison

On the singularities of convex functions

$$
\Sigma_{0, \alpha}=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(x)) \geq \alpha\}
$$

We recover that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{R^{d-1} \operatorname{Lip}(\phi)}{\alpha}
$$

is countably \mathcal{H}^{d-k}-rectifiable. It satisfies

This yields

Comparison

On the singularities of convex functions

$$
\Sigma_{0, \alpha}=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(x)) \geq \alpha\}
$$

We recover that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{R^{d-1} \operatorname{Lip}(\phi)}{\alpha}
$$

Theorem (Alberti, Ambrosio, Cannarsa, 1992):
Let $k \in\{1, \ldots, d\}$. The set

$$
\Sigma^{k}:=\left\{x \in \Omega \mid \operatorname{dim}_{\mathcal{H}}(\partial \phi(x)) \geq k\right\}
$$

is countably \mathcal{H}^{d-k}-rectifiable. It satisfies

$$
\int_{\Sigma^{k}} \mathcal{H}^{k}(\partial \phi(x)) \mathrm{d} \mathcal{H}^{d-k}(x) \leq C(d)(\operatorname{Lip}(\phi)+2 R)^{d} .
$$

Comparison

On the singularities of convex functions

$$
\Sigma_{0, \alpha}=\{x \in \Omega \mid \operatorname{diam}(\partial \phi(x)) \geq \alpha\}
$$

We recover that $\operatorname{dim}_{\mathcal{H}}\left(\Sigma_{0, \alpha}\right) \leq d-1$ and

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{R^{d-1} \operatorname{Lip}(\phi)}{\alpha}
$$

Theorem (Alberti, Ambrosio, Cannarsa, 1992):

Let $k \in\{1, \ldots, d\}$. The set

$$
\Sigma^{k}:=\left\{x \in \Omega \mid \operatorname{dim}_{\mathcal{H}}(\partial \phi(x)) \geq k\right\}
$$

is countably \mathcal{H}^{d-k}-rectifiable. It satisfies

$$
\int_{\Sigma^{k}} \mathcal{H}^{k}(\partial \phi(x)) \mathrm{d} \mathcal{H}^{d-k}(x) \leq C(d)(\operatorname{Lip}(\phi)+2 R)^{d}
$$

This yields

$$
\mathcal{H}^{d-1}\left(\Sigma_{0, \alpha}\right) \leq C(d) \frac{(\operatorname{Lip}(\phi)+2 R)^{d}}{\alpha}
$$

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x)) .
$$

- Let $M \in(0,+\infty)$.

Theorem:

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x)) .
$$

- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^{c} \varphi$,
- For any $q \in(p-1, \infty)$ and $r \in(1, \infty]$,

$$
\mathrm{W}_{q}\left(\left(T_{\varphi}\right)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, q, p, M, R) \mathrm{W}_{r}(\rho, \tilde{\rho})^{\frac{r}{q(r+1)}}
$$

where $C(d, q, p, M, R) \sim 2^{8(d+1)} p^{3}\left(\frac{q}{q-p+1}\right)^{1 / q} d^{2}\left(1+\beta_{d}\right)\left(1+M_{\rho}\right)(1+R)^{2+p+d}$.

Main result

General setting

Assumptions:

- Let $R>0$ and let $\Omega=B(0, R) \subset \mathbb{R}^{d}$.
- Let $p \geq 2$ and $c(x, y)=\|x-y\|^{p}$. Let $\varphi \in \mathcal{C}(\Omega)$ satisfying $\varphi=\left(\varphi^{c}\right)^{\bar{c}}$. Denote

$$
T_{\varphi}: x \mapsto x-\left(\nabla\|\cdot\|^{p}\right)^{-1}(\nabla \varphi(x))
$$

- Let $M \in(0,+\infty)$.

Theorem:

- For any $\rho \in \mathcal{P}_{\text {a.c. }}(\Omega)$ s.t. $\rho \leq M$,
- For any $\tilde{\rho} \in \mathcal{P}(\Omega)$ and $\tilde{\gamma} \in \mathcal{P}(\Omega \times \Omega)$ s.t. $\left(p_{1}\right)_{\#} \tilde{\gamma}=\tilde{\rho}$ and $\operatorname{spt}(\tilde{\gamma}) \subset \partial^{c} \varphi$,
- For any $q \in(p-1, \infty)$ and $r \in(1, \infty]$,

$$
\mathrm{W}_{q}\left(\left(T_{\varphi}\right)_{\#} \rho,\left(p_{2}\right)_{\#} \tilde{\gamma}\right) \leq C(d, q, p, M, R) \mathrm{W}_{r}(\rho, \tilde{\rho})^{\frac{r}{q(r+1)}}
$$

where $C(d, q, p, M, R) \sim 2^{8(d+1)} p^{3}\left(\frac{q}{q-p+1}\right)^{1 / q} d^{2}\left(1+\beta_{d}\right)\left(1+M_{\rho}\right)(1+R)^{2+p+d}$.
Thank you for your attention!

[^0]: Theorem

