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A diffeomorphic deformation

Figure – Interpolation of happiness

A diffeomorphic transformation is a smooth map which is smoothly
invertible.



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

Computational Anatomy

Old questions:

• to find a framework for registration of biological shapes,

• to develop statistical analysis in this framework.

Action of a transformation group on shapes or images
Idea pioneered by Grenander and al. (80’s), then developed by M.Miller,
A.Trouvé, L.Younes,. . .

Figure – Deforming the shape of a fish by D’Arcy Thompson, author of On
Growth and Forms (1917)
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Variety of shapes

Figure – Different anatomical structures extracted from MRI data
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Idea of Riemannian metrics on shapes
Generalizations of statistical tools in Euclidean space:

• Distance often given by a Riemannian metric.

• Straight lines → geodesic defined by

Variational definition: arg min
c(t)

∫ 1

0

‖ċ‖2
c(t) dt = 0 ,

Equivalent (local) definition: ∇ċ ċ = c̈ + Γ(c)(ċ, ċ) = 0 .

• Average → Fréchet/Karcher mean.

Variational definition: arg min{x → E [d2(x , y)]dµ(y)}
Critical point definition: E [∇x d2(x , y)]dµ(y)] = 0 .

• PCA → Tangent PCA or PGA.

• Geodesic regression, cubic regression...(variational or algebraic)

Riemannian metric needed, or at least a connection.

Pitfalls:

• Loose uniqueness of geodesic or average (positive curvature).

• Equivalent definitions diverge (generalisation of PCA).
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• Average → Fréchet/Karcher mean.

Variational definition: arg min{x → E [d2(x , y)]dµ(y)}
Critical point definition: E [∇x d2(x , y)]dµ(y)] = 0 .

• PCA → Tangent PCA or PGA.

• Geodesic regression, cubic regression...(variational or algebraic)

Riemannian metric needed, or at least a connection.

Pitfalls:

• Loose uniqueness of geodesic or average (positive curvature).

• Equivalent definitions diverge (generalisation of PCA).



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

Paradigm shift with deep learning

High-dimensions + large data

Regression (analysis): find maps F : Rd → Rn with d >> n, from
large number of points.

Generative modeling (synthesis): find maps F : Rn → Rd with
d >> n, from large number of points.

Shapes are replaced by probability distributions in high-dimension.

Some mathematical tools can be re-used to understand learning
dynamics.
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Infinite dimensional spaces

The space of maps M → N.

The space of diffeomorphisms Diff(M).

The space of densities Dens(M).

We will use different Hilbert/Riemannian metrics: for instance:

Example: L2(M,R) = {f : M → N ;
∫

M
‖f (x)‖2dµ(x)}

Riemannian metric on L2(M,N),
g(f )(δf , δf ) =

∫
M

gN (f (x))(δf (x), δf (x))dµ(x).

Hs(M,N).

Shape spaces: Emb(S1,R2)�Diff(S1).
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Some definitions

Definition (Natural operations on groups)

Let G be a Lie group.
Adg (m) = gmg−1 . (1)

Note that
Adg1 Adg2 = Adg1g2 . (2)

and Adg : TId G 7→ TId G .

Definition (Lie algebra and Lie bracket)

The tangent space at Id ∈ G , is called the Lie algebra. It is equipped
with the Lie bracket:

[ζ, ξ] := adζ ξ :=
d

dt
Adg(t)(ξ) . (3)

where d
dt t=0

g(t) = ζ at g(t = 0) = Id.
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Left action

Definition (Left action)

A left action of the group G on a space M is a map G ×M → M
satisfying

1 Id · q = q for q ∈ M.

2 g2 · (g1 ·M) = (g2g1) · q.

• The group on itself by multiplication, left multiplication or right
multiplication by the inverse.

• GLn(R) acting by multiplication on Rn: (M, v) 7→ Mv .

• The group of diffeomorphisms Diff of Rd on n−points (landmarks)
(Rd )n: (ϕ, (x1, . . . , xn)) 7→ (ϕ(x1), . . . , ϕ(xn)).

• Diff on functions (0-forms): (ϕ, I ) 7→ I ◦ ϕ−1.

• Diff on densities (n-forms): (ϕ, ρ) 7→ Jac(ϕ−1)ρ ◦ ϕ−1.
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Some definitions

Definition (Infinitesimal action)

Let ξ ∈ TIdG and q ∈ M. Consider g(t) ∈ G such that g(0) = Id and
ġ(0) = ξ and define:

ξ · q def.
=

d

dt

∣∣∣∣
t=0

g(t) · q . (4)

Examples
1 For matrices, ξ ·M = ξM .

2 For SO(n) acting on the sphere, the Lie algebra is skew-symmetric
matrices. ξ · v = ξv .

3 For densities: v · ρ = − div(ρv) .

4 For functions: v · I = −〈∇I , v〉.
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A concrete example

G = Diff(R2) and M = Emb(S1,R2)�Diff(S1).
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A concrete example

G = Diff(R2) and M = Emb(S1,R2)�Diff(S1).

Figure – A vector field and a curve



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

A concrete example

G = Diff(R2) and M = Emb(S1,R2)�Diff(S1).

Figure – Two different vector fields lead to the same infinitesimal action
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Momentum maps

Moment/Momentum map

Let G act on the left on M, then G acts on TM and T ∗M by

g · (x , v) = (g · x , d [g · x ](v)) (5)

g−1∗ · p = d [g · x ]−>(p) . (6)

Given (x , p) ∈ T ∗M, define v 7→ 〈p, v · x〉.Riesz theorem:{
J : T ∗M → (TeG )∗

(x , p) 7→ 〈J(p, x), v〉 := 〈p, v · x〉 .
(7)

J(g−1∗ · p, g · x) = Ad∗g−1 J(p, x) . (8)

• GLn(R) acting by multiplication on Rn: J(p, v) = pv>.

• Action on densities: J(P, ρ) = ∇Pρ.

• Action on images: J(ρ, I ) = ∇Iρ.
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Riemannian submersion

Let (M, gM ) and (N, gN ) be two Riemannian manifolds and f : M 7→ N.

Definition
The map f is a Riemannian submersion if f is a submersion and for any
x ∈ M, the map dfx : Ker(dfx )⊥ 7→ Tf (x)N is an isometry.

• Vertx := Ker(df (x)) is the vertical space.

• Horx
def.
= Ker(df (x))⊥ is the horizontal space.

• Geodesics on N can be lifted ”horizontally” to geodesics on M.

Horizontal lift of geodesics

Consider π : M 7→ N a Riemannian submersion. Then, for every geodesic
y(t) ∈ N, there exists a unique geodesic x(t) ∈ M of minimal length
such that π(x(t)) = y(t).
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Other property

Example of application

Some operations are stable under submersions.

Polar factorisation like in the case of groups.

Theorem (O’Neill’s formula)

Let X ,Y be two orthonormal vector fields on M with horizontal lifts X̃
and Ỹ , then

KN (X ,Y ) = KM (X̃ , Ỹ ) +
3

4
‖ vert([X̃ , Ỹ ])‖2

M . (9)
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How to build such submersions ?

1 Consider G left acting on M transitively with a surjective
infinitesimal action.

2 For each q ∈ M, choose a metric on TIdG : g(q)(ξ, ξ).

3 Define

gM (q)(v , v)
def.
= min

ξ∈TIdG
g(q)(ξ, ξ) under the constraint v = ξ·q , (10)

Proposition
1 Choose a point q0 and the map g 7→ g · q0 is a Riemannian

submersion. Work out the metric on the group?

2 On the isotropy subgroup Gq0 , the induced metric is right-invariant
(w.r.t. Gq0 ).
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Principal fiber bundle

Definition (Principal fiber bundle)

A principal fiber bundle is the data of P,B two manifolds and G a group
acting freely (and transitively on the fibers of π) on P and a map
π : P → B which satisfy these relations:

π(g · x) = π(x).

Locally, P ≈ G × U with U ⊂ B and π is the projection on U.

Example: P = C× C and the group is S1 = {z ∈ C ; |z | = 1}. The
action is (z1, z2), e iθ 7→ (e iθz1, e

iθz2).

Principal fiber bundle

Assume that the action of G is via isometries for the metric g on P.
Then, the projection π can be made into a Riemannian submersion: for a
given y = π(x) and vy ∈ Ty B

‖vy‖2 = inf
vx∈Tx P

{‖vx‖2 ; dπ(x)(vx ) = vy} , (11)

which does not depend on the choice of x in the fiber.
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Right-invariant metric on groups

Use G a Lie group or at least a group with continuous composition and
manifold structure.

Right-invariant metric on groups

Choose an inner product 〈·, ·〉 on TIdG and g(q)(ξ, ξ)
def.
= 〈ξ, ξ〉.

The metric on G is the associated right-invariant metric.

The distance is given by:

d(ϕ0, ϕ1)2 = inf
ξ
{
∫ 1

0

‖ξ(t)‖2dt ; ψ(1) ◦ ϕ0 = ϕ1 ; ∂tψ = ξ(t, v(t, x))} .

(12)
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Geodesic flow for right-invariant metric

Calculus of variations:
Write variations for ϕ: δϕ vanishing at t = 0, 1.

In Eulerian coordinates, δϕ ◦ ϕ−1 = w .

Define v as ∂tϕ = v ◦ ϕ.

Compute

∂tsϕ = δv ◦ ϕ+ Dv(ϕ)(w ◦ ϕ) = ∂tw ◦ ϕ+ Dw(ϕ)(v ◦ ϕ) .

We have δv = ∂tw + Dw(v)− Dv(w) = ∂tw − adv w .

Insert into the Lagrangian:
∫
〈Lv , ∂tw − adv w〉dt

Integrate by parts, obtain Euler-Arnold-Poincaré equation:

∂tm + ad∗v m = 0 where m = Lv .

Reference: Sur la géométrie différentielle des groupes de lie de dimension

infinie et ses applications à l’hydrodynamique des fluides parfaits, Arnold, 1966.
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Examples of Euler-Arnold-Poincaré

1 Incompressible Euler equation, L2 norm on divergence free vector
fields.

∂tv +∇v v = −∇p . (13)

2 Camassa-Holm equation, 1D, H1 norm on vector fields. Model for
shallow water equation, wave breaking, blow-up in finite time.

∂tu − 1

4
∂txx u u + 3∂x u u − 1

2
∂xx u ∂x u − 1

4
∂xxx u u = 0 (14)

3 Korteweg-de-Vries equation: L2 metric on the group Diff(S1)nR.

∂tu = −3u∂x u − a∂xxx u . (15)

Khesin, Misiolek,...
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Conserved quantities

Noether’s theorem

For L(q, q̇) invariant wrt symmetries ϕ(s) = Id +sξ:

L(ϕ(s)q,
d

dt
ϕ(s)q) = cste =⇒ 〈δL

δq̇
, ξ(q)〉 = cste (16)

For Euler-Poincaré, 〈 δ`δv (ϕ̇ ◦ ϕ−1), ϕ̇ ◦ ϕ−1〉L2 . and the symmetries
generate ξ(ϕ) = dϕ(ξ) with ξ ∈ Vec(M).

=⇒ 〈 δ`
δv

(ϕ̇ ◦ ϕ−1), dϕ(ξ) ◦ ϕ−1〉L2

Euler-Poincaré-Arnold integrated form:

Ad∗ϕ m(t) = m(0) or Ad∗ϕ−1 (m(0)) = m(t) . (17)
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Regularity of composition

Definition
Hs Diffeomorphisms: M is a closed manifold or Euclidean space

Diffs(Rd ) := {id +h , h ∈ Hs and id +h invertible.} (18)

On M it is even simpler: set of C 1 diffeomorphisms (orientation
preserving) in Hs .

The following maps are regular for s > d/2 + 1, ϕ ∈ Diffs(M), k ≥ 0:

1 (f , g) ∈ Hs−1 × Hs−1 7→ fg is smooth.

2 f ∈ Hs+k , ϕ ∈ Diffs(M) 7→ f ◦ ϕ are C k .

3 ϕ ∈ Diffs(M) 7→ f ◦ ϕ is C k for f ∈ Hs+k .

4 ϕ ∈ Diffs+k (M) 7→ ϕ−1 is C k .

5 (δϕ, ϕ) ∈ Hs × Diffs(M) 7→ δϕ ◦ ϕ−1 only C 0!

Reference: On the regularity of the composition of diffeomorphisms, Inci,
Kappeler, Topalov, 2012.
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Local existence in time

Example of incompressible Euler: Rewrite in Lagrangian coordinates.

ϕ̈ = (∂tv +∇v v) ◦ ϕ = −∇p ◦ ϕ . (19)

Taking divergence, we get

div(∇p) = − div(∇v v) (20)

−∇p = ∇∆−1∇v v (21)

(22)

In the end:
ϕ̈ = Qϕ(ϕ̇) with Qϕ(f ) = Q(f ◦ ϕ−1) ◦ ϕ

An ODE in Hilbert spaces!
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Smoothness of Qϕ

Smoothness wrt ϕ

The map ϕ 7→ Qϕ for ϕ ∈ Hs is smooth.

Proof.
Set ∂tϕ = w ◦ ϕ, compute

d

dt
Qϕ = (∇w (Q(·))− Q(∇w (·)))ϕ = [∇w ,Q]ϕ . (23)

Two important points:

1 Same order than Q.

2 Can iterate this formula: note that w = δϕ ◦ ϕ−1 =⇒ second term
is also a conjugated differential operator applied to δϕ.

Reference: Groups of Diffeomorphisms and Fluid Motion: Reprise, D.
Ebin., 2015
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No loss of regularity
What about if the initial data is more regular, local existence in Hs .

No loss, no gain

Let T ∗(n) the possible blow-up time for the geodesic. Then,

T ∗(k) = T ∗(n) for d/2 + 1 < k ≤ n . (24)

Proof.

Use right-invariance to get information on the derivative: ϕ(t) ◦ ψ(s) is a
geodesic in t for fixed s. Then,

Flt(ϕ(0), v(0)) ◦ ψ(s) = Flt(ϕ(0) ◦ ψ(s), v(0) ◦ ψ(s)) , (25)

Differentiating in s leads to

dϕ(t)(w) = d Fl(ϕ(0), v(0))(dϕ(0)w , dv(0)w) . (26)

Ref: Semi-invariant Riemannian metrics in hydrodynamics, Bauer, Modin,

2020.
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Reproducing kernel Hilbert spaces

Reproducing Kernel Hilbert Spaces (RKHS)

Consider H ⊂ F(Ω,R) Hilbert Space such that H ↪→ C 0(Ω).

δx ∈ H∗: Map µ 7→
∫
δx dµ(x) ∈ H∗.

〈δx , v〉 = v(x) =: 〈k(x , ·), v〉H .

k(x , y) = e−‖x−y‖2/σ2

Gaussian kernel or sums of it.

Used also to compare probability measures: called Maximum Mean
Discrepancy (MMD)

‖µ− ν‖H∗ = sup
f∈BH (0,1)

〈f , µ− ν〉 . (27)

For Sobolev spaces order k > d/2, so-called Matern kernel. The
differential operator is similar to (id−α∆)k .



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

Trouvé’s group: start from vector fields

Data:
1 D a domain in Rd .

2 V ↪→ C 1(D,Rd ) a Hilbert space of vector fields.

3 Let ξ ∈ L2([0, 1],V ). Denote Fl1(ξ)

∂tϕ(t, x) = ξ(t, ϕ(t, x)) (28)

ϕ(0, x) = x ∀x ∈ D . (29)

Definition
The group GV is defined by

GV
def.
= {ϕ(1) : ∃ ξ ∈ L2([0, 1],V ) s.t. Fl1(ξ)} , (30)

and is a complete metric space with

dist(ψ1, ψ0)2 = inf

{∫ 1

0

‖ξ‖2
V dt : ξ ∈ L2([0, 1],V ) s.t. ψ1 = Fl1(ξ) ◦ ψ0

}
(31)
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Sobolev group of diffeomorphisms

Question

When is GV a Riemannian manifold (of infinite dimensions) ?
(Locally modelled on a Hilbert space + smoothness of the metric)

Theorem

Let n > d/2 + 1. Define (GHn(Rd )) = {Id + f | f ∈ Hn(Rd )} ∩ C 1
Diff (Rd )

with the right-invariant metric Hn. Then,

1 (GHn(Rd ))0 = GHn(Rd ),

2 (GHn(Rd ))0 is a complete Riemannian manifold: Initial and boundary
value problems have (global) solutions.

Open question: are there other RKHS for which the group is a manifold?
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Ideas of proof

Two ingredients:

1 Smoothness of the metric (Ebin-Marsden 1970).

TG n×G n TG n → Hn(Rd ,Rd )×Hn(Rd ,Rd )→ R
(ϕ,X ,Y ) 7→ (X ◦ ϕ−1,Y ◦ ϕ−1)︸ ︷︷ ︸

only continuous

7→ 〈X ◦ ϕ−1,Y ◦ ϕ−1〉Hn

︸ ︷︷ ︸
smooth!

2 Direct method of calculus of variations. Minimize a lower
semicontinuous functional under weakly closed constraints.

• Fredholm properties of Riemannian exponential maps on
diffeomorphism groups (Misiolek and Preston), Inventiones Math.

• On Completeness of Groups of Diffeomorphisms. [JEMS, with M.
Bruveris]
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Right-invariant metric and left action

Recall G × Q → Q a left action + right-invariant metric =⇒
metric on Q.

Write geodesic equation using Lagrange multipliers:

L(v , p, q) =

∫ 1

0

1

2
‖v‖2

V − 〈p, v · q〉 dt (32)

Variations in (p, q) implies
q̇ = v · q
ṗ = −dv>(q)(p)

Lv = J(p, q) .

(33)

where J(p, q) denotes the linear form on V induced by v 7→ 〈p, v(q)〉.

d

dt
J(p, q) + ad∗v (J(p, q)) = 0 . (34)
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Example on points

Q = (Rd )N .

G = Diff(M).

The action is by composition. (ϕ(qi ))i=1,...,N .

Recall k is the inverse of L.

Geodesic equations are{
q̇i =

∑N
j=1 k(qi , qj )pj

ṗi = −(
∑N

j=1 D1k(qi , qj )pj )
>pi .

(35)

Hamiltonian equations for

H(p, q) =
1

2

N∑
i,j=1

〈pi , k(qi , qj )pj〉 .



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

Example on densities
Q = Dens(M).
G = Diff(M).
The action is by pushforward ϕ](ρ).

The metric is

gR (ρ)(δρ, δρ) =
1

2

∫∫
〈∇P(x), k(x , y)∇P(y)〉dρ(x)dρ(y) , (36)

with
δρ = div(ρK ? (ρ∇P)) .

Geodesic equations are 
∂tρ+ div(vρ) = 0

∂tP + 〈∇P, v〉 = 0

v = K ? (∇Pρ) .

(37)

Hamiltonian equations for

H(ρ,P) =
1

2

∫∫
〈∇P(x), k(x , y)∇P(y)〉dρ(x)dρ(y) .

=⇒ the order of the metric is deg(L)− 1.
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Beware of the order

Non-degenerate/degenerate right-invariant metrics on group of
diffeomorphisms

Theorem (Mumford, Michor, 2005)

For d ≥ 1, the Hdiv right-invariant distance on the group of
diffeomorphisms is non-degenerate.

‖v‖2
div =

∫
Rd

‖v(x)‖2 + | div(v)(x)|2dx . (38)

Theorem (Maor, Jerrard, 2018)

For d ≥ 1, the Hs right-invariant distance on the group of
diffeomorphisms is degenerate if s < 1.
That is, between any two connected diffeomorphisms, there exists a path
of arbitrarily small length.
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Optimal transport

Wasserstein metric tensor

Consider G = Diff(Rd ) endowed with the L2 metric
∫
Rd ‖δϕ(x)‖2dx .

Consider S = SDiff(Rd ) the subgroup of volume preserving
diffeomorphisms.

Remark that S is the isometry subgroup of G .

=⇒ Diff(Rd )→ Diff(Rd )/SDiff(Rd ) is a Riemannian submersion with:

g(ρ)(v , v)
def.
=

∫
Rd

|v(x)|2 ρ(x)dx . (39)

Diff(Rd )/SDiff(Rd ) ≈ Dens1(Rd ).

A more computational way is to set the metric on Dens1(Rd ) as

gW (ρ)(δρ, δρ) = inf
v

{∫
Rd

|v(x)|2 ρ(x)dx ; δρ = − div(ρv)

}
. (40)
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Optimal transport

The Wasserstein metric tensor

The Riemannian(-like) metric tensor at a density ρ is∫
M

‖∇∆−1
ρ δρ‖2dρ(x) , (41)

where ∆−1
ρ (δρ) is the unique solution to the elliptic equation:

div(ρ∇P) = δρ . (42)

It is also equal to ∫
M

∆−1
ρ (δρ)δρdx . (43)

=⇒ it is an H−1 type metric on the space of densities.
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A geometric picture: Otto’s Riemannian submersion

SDiff(M): Isotropy

subgroup of µ

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian submanifold of
L2(M,M): Incompressible Euler equation on SDiff(M)
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian submanifold of
L2(M,M): Incompressible Euler equation on SDiff(M)
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

(Densp(M),W2) µ π(g1) = µ1

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A pre polar factorization
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A pre-formulation of the polar factorization

SDiff(M)

Id

g1

g0

(Densp(M),W2) µ π(g1) = µ1

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – Polar factorization: g0 = arg ming∈SDiff ‖g1 − g‖L2
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Reminders: Dynamic formulation (Benamou-Brenier)
For geodesic costs, for instance c(x , y) = 1

2 |x − y |2

inf E(v) =
1

2

∫ 1

0

∫
M

|v(x)|2ρ(x) dx dt , (44)

s.t. {
ρ̇+∇ · (vρ) = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(45)

Convex reformulation: Change of variable: momentum m = ρv ,

inf E(m) =
1

2

∫ 1

0

∫
M

|m(x)|2

ρ(x)
dx dt , (46)

s.t. {
ρ̇+∇ ·m = 0

ρ(0) = µ0 and ρ(1) = µ1 .
(47)

where (ρ,m) ∈M([0, 1]×M,R× Rd ).

Existence of minimizers: Fenchel-Rockafellar.
Numerics: First-order splitting algorithm: Douglas-Rachford.
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Geodesic flow

The geodesic are {
∂tρ+ div(ρ∇P) = 0

∂tP + 1
2‖∇P‖2 = 0 .

(48)

Second equation does not depend on ρ!
Hamiltonian equation for

H(ρ,P) =
1

2

∫
Rd

‖∇P‖2ρ(x)dx .

Note that it is linear in ρ.
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Unbalanced optimal transport

Figure – Optimal transport between bimodal densities
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Unbalanced optimal transport

Figure – Another transformation
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Two possible directions

Pros and cons:

• Extend static formulation: Frogner et al.

minλKL(Proj1∗ γ, ρ1) + λKL(Proj2∗ γ, ρ2)

+

∫
M2

γ(x , y)d(x , y)2 dx dy (49)

Good for numerics, but is it a distance ?

• Extend dynamic formulation: on the tangent space of a density,
choose a metric on the transverse direction.
Built-in metric property but does there exist a static formulation ?
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An extension of Benamou-Brenier formulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ · (ρv) + αρ ,

where α can be understood as the growth rate.

WF(m, α)2 =
1

2

∫ 1

0

∫
M

|v(x , t)|2ρ(x , t) dx dt

+
δ2

2

∫ 1

0

∫
M

α(x , t)2ρ(x , t) dx dt .

where δ is a length parameter.

Remark: very natural and not studied before.
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Convex reformulation

Add a source term in the constraint: (weak sense)

ρ̇ = −∇ ·m + µ .

The Wasserstein-Fisher-Rao metric:

WF(m, µ)2 =
1

2

∫ 1

0

∫
M

|m(x , t)|2

ρ(x , t)
dx dt +

δ2

2

∫ 1

0

∫
M

µ(x , t)2

ρ(x , t)
dx dt .

• Fisher-Rao metric: Hessian of the Boltzmann entropy/
Kullback-Leibler divergence and reparametrization invariant.
Wasserstein metric on the space of variances in 1D.

• Convex and 1-homogeneous: convex analysis (existence and more)

• Numerics: First-order splitting algorithm: Douglas-Rachford.

• Code available at
https://github.com/lchizat/optimal-transport/

https://github.com/lchizat/optimal-transport/
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Numerical simulations

Figure – WFR geodesic between bimodal densities
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An other Hamilton-Jacobi equation

Fenchel-Rockafellar theorem implies

WF(µ, ν) = sup
ϕ
〈ϕ(1), µ〉 − 〈ϕ(0), ν〉 (50)

where ϕ ∈ C 1(M) satisfies

∂tϕ+
1

2

(
|∇ϕ|2 +

ϕ2

δ2

)
≤ 0 ,

together with the generalized continuity equation

∂tµ+ div(µ∇ϕ) = µϕ . (51)

Question: Can we remove time from the optimization by finding a
Kantorovich formulation?
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From dynamic to static

Group action

Mass can be moved and changed: consider m(t)δx(t). Lagrangian
coordinates: (ϕ(t, x0), λ(t, x0)m0)

Infinitesimal action

ρ̇ = −∇ · (vρ) + αρ ⇔

{
ẋ(t) = v(t, x(t))

ṁ(t) = µ(t, x(t))

A cone metric

WF2(x ,m) ((ẋ , ṁ), (ẋ , ṁ)) =
1

2
(mẋ2 +

ṁ2

m
) ,

Change of variable: r 2 = m...
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ṁ2

m
) ,

Change of variable: r 2 = m...



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

From dynamic to static

Group action

Mass can be moved and changed: consider m(t)δx(t). Lagrangian
coordinates: (ϕ(t, x0), λ(t, x0)m0)

Infinitesimal action

ρ̇ = −∇ · (vρ) + αρ ⇔

{
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Riemannian cone

Definition

Let (M, g) be a Riemannian manifold. The cone over (M, g) is the
Riemannian manifold (M × R∗+, r 2g + dr 2).

r

α

For M = S1(r), radius r ≤ 1. One has sin(α) = r .
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Geometry of a cone

• The distance:

d((x1,m1), (x2,m2))2 =

m2 + m1 − 2
√

m1m2 cos

(
1

2
dM (x1, x2) ∧ π

)
. (52)

• M = R then (x ,m) 7→
√

me ix/2 ∈ C local isometry.

Corollary

If (M, g) has sectional curvature greater than 1, then
(M × R∗+,m g + 1

4m dm2) has non-negative sectional curvature.
For X ,Y two orthornormal vector fields on M,

K (X̃ , Ỹ ) = (Kg (X ,Y )− 1) (53)

where K and Kg denote respectively the sectional curvatures of M × R∗+
and M.
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Visualize geodesics for r 2g + dr 2

Figure – Geodesics on the cone
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Generalization of Otto’s Riemannian submersion
The left group action:

π :
(
Diff(M)n C∞(M,R∗+)

)
× Dens(M) 7→ Dens(M)

π ((ϕ, λ), ρ) := ϕ∗(λ
2ρ)

Group law:

(ϕ1, λ1) · (ϕ2, λ2) = (ϕ1 ◦ ϕ2, (λ1 ◦ ϕ2)λ2) (54)

Theorem

Let ρ0 ∈ Dens(M) and π0 : Diff(M)n C∞(M,R∗+) 7→ Dens(M) defined
by π0(ϕ, λ) := ϕ∗(λ

2ρ0). It is a Riemannian submersion

(Diff(M)n C∞(M,R∗+), L2(M,M × R∗+))
π0−→ (Dens(M),WF)

(where M × R∗+ is endowed with the cone metric).

O’Neill’s formula: sectional curvature of (Dens(M),WF) nonnegative if
KM ≥ 1.
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Monge formulation

Monge formulation

WF (ρ0, ρ1) = inf
(ϕ,λ)

{
‖(ϕ, λ)− (Id, 1)‖L2(ρ0) : ϕ∗(λρ0) = ρ1

}
(55)

Under existence and smoothness of the minimizer, there exists a function
p ∈ C∞(M,R) such that

(ϕ(x), λ(x)) = expC(M)
x

(
1

2
∇p(x), p(x)

)
, (56)

Equivalent to Monge-Ampère equation

With z
def.
= log(1 + p) one has

(1 + |∇z |2)e2zρ0 = det(Dϕ)ρ1 ◦ ϕ (57)

and

ϕ(x) = expM
x

(
arctan

(
1

2
|∇z |

)
∇z(x)

|∇z(x)|

)
.
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A relaxed static OT formulation
Define

KL(γ, ν) =

∫
dγ

dν
log

(
dγ

dν

)
dν + |ν| − |γ|

Theorem (Dual formulation)

WF 2(ρ0, ρ1) = sup
(φ,ψ)∈C(M)2

∫
M
φ(x) dρ0 +

∫
M
ψ(y) dρ1

subject to ∀(x , y) ∈ M2, φ(x) ≤ 1 , ψ(y) ≤ 1 and

(1− φ(x))(1− ψ(y)) ≥ cos2 (|x − y |/2 ∧ π/2)

The corresponding primal formulation

WF 2(ρ1, ρ2) = inf
γ

KL(Proj1∗ γ, ρ1) + KL(Proj2∗ γ, ρ2)

−
∫

M2
γ(x , y) log(cos2(d(x , y)/2 ∧ π/2))dx dy

Theorem
On a Riemannian manifold (compact without boundary), the static and dynamic
formulations are equal.
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Gradient flow of the entropy
With respect to the Wasserstein metric:

Minimize w.r.t. v the Lagrangian:

1

2

∫
Rd

‖v(x)‖2ρ(x)dx +
δF(ρ)

δρ
(− div(ρv)) (58)

Therefore,

vρ = −ρ∇δF
δρ

For F(ρ) =
∫
Rd ρ log(ρ/e−V )dx

Fokker-Planck ∂tρ = div(∇ρ+ ρ∇V )) = ∆ρ+ div(ρ∇V ) . (59)
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Convergence to the equilibrium measure

Fokker-Planck describes the law of the Langevin diffusion X (t)

dX (t) = −∇V (X (t)) +
√

2dB(t) . (60)

Since it is a gradient flow, it might converge to a steady state:

0 = + div(ρ(∇ log(ρ) +∇V )) =⇒ ρ = e−V (61)

Main tool: Geodesic convexity

Entropy is convex along geodesic. (In fact Ric(M) ≥ 0.)∫
M

V (x)ρ(x)dx is convex along geodesic iif V is convex (along
geodesic).
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Key tool for convergence

Polyak-Lojasiewicz condition

∃λ > 0 s.t. λ(f (x)− f∗) ≤
1

2
‖∇f (x)‖2 , (62)

implies exponential convergence.

Example: ẋ = −∇f (x).

d

dt
(f (x)− f∗) = −‖∇f (x)‖2 ≤ 2λ(f (x)− f∗) . (63)

f (x(t))− f∗ ≤ (f (x(0))− f∗)e−2λt , (64)

No need for convexity, applies to Riemannian manifolds.

Only need to measure the length of the gradient.

Reference: Local conditions for global convergence of gradient flows and

proximal point sequences in metric spaces, Dello Schiavo, Maas, Pedrotti,

2023.
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How to prove PL inequality?

Proposition

If F : H 7→ R is λ-strongly convex, then F satisfies the PL condition for
the constant 1

2λ .

Stability of PL

Let ϕ : Ω→ Ω be a C 1 diffeomorphism of the definition domain of f ,
then ϕ∗f (y) , f ◦ ϕ(y) satisfies PL(λ/M2) if f satisfies PL(λ) for
M = supx∈Ω ‖dϕ(x)−1‖

PL says nothing on convergence of x(t). Add regularity condition such as
‖∇f (x)‖2 ≤ β(f (x)− f∗) , =⇒ convergence towards x? ∈ arg min f .
Local PL is a much more mild condition:

Local PL

On a metric space (X , d), F : X → R satisfies a local PL condition if on
any bounded set B ⊂ Ω, there exists λ(B) such that

λ(B)(f (x)− f∗) ≤
1

2
‖∇f (x)‖2 ∀x ∈ B , (65)
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Gradient flow of the entropy

With respect to a right-invariant metric:

Minimize w.r.t. v the Lagrangian:

1

2
‖v‖2

V +
δF(ρ)

δρ
(− div(ρv)) (66)

Therefore,

Lv = −ρ∇δF
δρ

For F(ρ) =
∫
Rd ρ log(ρ/e−V )dx

SVGD ∂tρ = div(ρK ? (∇ρ+ ρ∇V )) (67)
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Stein variational gradient descent

In general ∇ρ not defined for Dirac masses!

∂tρ = div(ρ∇K ? ρ+ Kρ∇V ) (68)

For empirical measures: ρ = 1
N

∑N
i=1 δqi ,

q̇i = −
N∑

j=1

∇K (qi , qj ) + K (qi , qj )∇V (qj ) . (69)

What is the speed of convergence to the equilibrium measure?
References:

Scaling Limit of the Stein Variational Gradient Descent: The Mean Field
Regime, Lu, Lu, Nolen, 2019.

On the geometry of Stein variational gradient descent, Duncan, Nüsken,
Szpruch, 2022.
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Gradient flow of MMD

Interaction energy on P(Rd )

On Rd , interaction function

Fν(µ) =

∫
Rd

∫
Rd

(µ(x)− ν(x))k(x , y)(µ(y)− ν(y))dxdy . (70)

where µ, ν ∈ P(Rd ), k(x , y) = k(y , x) and k is a conditionally positive
definite kernel (CPD).

Study the PDE

Gradient flow PDE

∂tµ(x) = − div(µ(x)∇
∫
Rd

k(x , y)(µ(y)− ν(y))dy) . (71)

Question: long time behaviour of this PDE?
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Minimization of a positive definite function

Definition
A kernel k is CPD if it satisfies for all n ≥ 1, pi ∈ R,

∑
i,j=1,...,n

pi k(xi , xj )pj ≥ 0 for xi ∈ Rd and
n∑

i=1

pj = 0 . (72)

Consequence

Fν(µ) is nonnegative and 0 iff µ = ν :

Fν(µ) =

∫
Rd

∫
Rd

(µ(x)− ν(x))k(x , y)(µ(y)− ν(y))dxdy . (73)

1 Positive definite kernels: k(x , y) = e
− ‖x−y‖2

2σ2 .

2 Energy distance: metric space of negative type: k(x , y) = −d(x , y) is
CPD.
True for Euclidean spaces, sphere, hyperbolic space.

3 Coulomb kernel: k(x , y) = cste
‖x−y‖d−2 .
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Motivation 1: Relaxation of shallow neural networks

Shallow neural network

f(θ1,θ2)(x) = θ1(σ(θ2(x))) , (74)

where θ1 ∈ L(Rd ,Rkd ), θ2 ∈ L(Rkd ,Rd ), σ a pointwise nonlinearity.
Optimization via gradient descent on parameters

n∑
i=1

‖yi − f(θ1,θ2)(xi )‖2 . (75)

Convex relaxation (Barron 90’s), overparametrize by a measure:
fµ(x) =

∫
ψθ(x)dµ(θ).

The problem becomes quadratic in µ

arg min
µ

n∑
i=1

‖yi − fµ(xi )‖2 (76)

Corresponding gradient descent: Wasserstein gradient flow.
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Example of use in imaging/machine learning

Diffeomorphic surface matching/normalizing flows:
Model: {

∂tϕ(t, x) = v(t, ϕ(t, x)) ,

ϕ(t = 0, x) = x .
(77)

Loss: D(µ, ν), relative entropy, MMD...

Minimize the loss without regularization (greedy approach).

ϕ(t = 1) such that D(ϕ(t = 1)](µ0), ν) is small.

Done by gradient descent, need to specify a norm on v .

Simplification: ψ = Id +εv then for ‖v‖2
L2 , optimizing on v leads

formally to:

∂tµ = − div(µ∇δD

δµ
(µ, ν)) (78)
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Properties of the energy

Standard convexity

The function Fν(µ) is convex along standard linear interpolations:

tµ0 + (1− t)µ1 , (79)

but in general rather nonconvex in the Wasserstein geometry!

Exception: −|x − y | in 1d . Consequence: global convergence in 1d .

How to extend this result in any dimension?
Deeper question: understand the gradient flow dynamic in terms of the

kernel.
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Comparison with optimal transport

Let H be a RKHS of smooth functions (e.g. Gaussian kernels),

DH (µ, ν) = sup
f∈B1(H)

〈f , ν − µ〉 = ‖K 1/2(µ− ν)‖L2 , (80)

whereas the L1 Wasserstein distance, denoted by W1 is defined by

W1(µ, ν) = sup
f∈B1(Lip)

〈f , ν − µ〉 . (81)

1 L2 Wasserstein obtains ”global” solutions.

2 Still expensive, entropic regularization...
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Comparison with optimal transport

Figure – µ = δ0 + δ2 to [Tx ]∗(µ) in function of x and OT (green).
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Comparison with optimal transport

Figure – Kernels distances squared of µ = δ0 + δ2 to [Tx ]∗(µ) in function of x
and OT (green).
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Simulations: Choice of kernel matters!

Figure – Gaussian kernel



Motivation How to build Riemannian metric in infinite dimensions? Right-invariant metrics Dynamic formulation of optimal transport Unbalanced Optimal Transport Gradient flows On global convergence of ResNets CH as Euler

Simulations: Choice of kernel matters!

Figure – Energy distance kernel: −d(x , y)
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Simulations: Choice of kernel matters!

Figure – Diffusion due to repulsivity of the kernel −d(x , y)
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A first example where PL is local

Study of the Coulomb kernel case ∆−1 on a closed connected
Riemannian manifold.

Fν(µ) =

∫
Rd

∫
Rd

(µ(x)− ν(x))∆−1(µ(y)− ν(y))dxdy . (80)

Fν(µ) =

∫
Rd

∫
Rd

∆−1(µ(x)− ν(x))∆∆−1(µ(y)− ν(y))dxdy . (81)
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PL estimate

Notation: ϕµ−ν the solution of ∆ϕµ−ν = µ− ν .

On a closed Riemannian manifold M
If µ is bounded below by µ.

Using the ”carré du champ”:

Eν(µ) =

∫
M

‖∇ϕµ−ν(x)‖2dvol(x) . (82)

The Wasserstein gradient norm:

‖∇W2 Eν(µ)‖2
W2

=

∫
M

‖∇ϕµ−ν(x)‖2dµ(x) . (83)

PL inequality holds if µ is bounded below.∫
M

‖∇ϕµ−ν(x)‖2dvol(x) ≤ 1

µ

∫
M

‖∇ϕµ−ν(x)‖2dµ(x) (84)
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Stability of the lower bound?

∂tµ(t, x) = − div(µ∇ϕµ−ν) = −〈∇µ,∇ϕµ−ν〉 − µ(∆ϕµ−ν) (85)

= µ(ν − µ) if ∇µ(t, x) = 0 . (86)

The right-hand side is driving to equilibrium at a minimum/maximum.
Analogy: gradient flow of F (µ) = 1

2‖µ− ν‖
2 wrt Fisher-Rao metric:∫

M
(δµ)2

µ :

µ̇ = µ(ν − µ) . (87)

=⇒ if µ(t, x) is sufficiently smooth, lower and upper bound are stable.

Conclusion
Question of global convergence is reduced to regularity and long time
existence of the PDE.
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Local existence in Hölder/Sobolev space

Rewrite the system in Lagrangian coordinates as{
∂tψ(t, x) = ∆−1(µ(t)− ν) ◦ ψ(t)

∂tµ(t, x) = − div(µ∇∆−1(µ(t)− ν))
(88)

Introduce f (t) := µ(t) ◦ ψ(t), we get{
∂tψ(t, x) = ∆−1

ψ(t)(f − ν ◦ ψ(t))

∂t f (t, x) = −f (t, x)2 + f (t, x)ν ◦ ψ(t)
(89)

where ∆−1
ψ(t)(h) = ∆−1(h ◦ ψ−1) ◦ ψ.

As shown in the first part, it is smooth in ψ... =⇒ local existence.
Using potential theory, it is possible to prove long time existence.

Reference: On the global convergence of Wasserstein gradient flow of the

Coulomb discrepancy, Vialard, Boufadène, 2023.
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Supervised learning

Setting: supervised learning.
Goal:

G? = min
θ
G(θ) := E[‖fθ(X )− Y ‖2] , (90)

but only acess X ,Y through samples: (xi , yi ).

=⇒ L(θ) := min
θ

1

N

N∑
i=1

‖fθ(xi )− yi‖2 . (91)

Global convergence of gradient descent on L(θ), find θ?.

Generalization, i.e. measure G (θ?)− G?.
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Structure of fθ.

Define Single Hidden Layer

SHLθ(x) = θ1(σ(θ2(x))) , (92)

with σ(x) entrywise nonlinearity (max(0, x)).
Deep networks

fθ(x) = SHLθn ◦ . . . ◦ SHLθ1 (x) . (93)

ResNets, encode residuals

fθ(x) = (Id +fθn ) ◦ . . . ◦ (Id +fθ1 )(x) . (94)

Very successful architecture (Deep Residual Learning for Image
Recognition, [He et al.] 105 citations)

Resembles to an Euler integration scheme for ODE.
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Model and loss

Neural ODE: {
∂tϕ(t, x) = v(t, ϕ(t, x)) ,

ϕ(t = 0, x) = x .
(95)

Minimize:

L(v) =
1

N

N∑
i=1

|ϕ(1)(xi )− yi |2 . (96)

Remark: no regularization on v (aka weight-decay).
Parameter is v ∈ L2([0, 1],V ) with this Hilbert metric structure.
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Compute the gradient

Gradient of L

DL(ξ)(η) =

∫ 1

0

〈J(p, q), η〉dt , (97)

whith p, q satisfying {
ṗ = −dξ>(q)(p)

q̇ = ξ(q) ,
(98)

and initial conditions p(1) = −∂q`(q(1)). a

a. `(q) =
∑
‖B(qi (1))− yi‖2.

=⇒ possible to integrate: J(p(t), q(t)) = Ad∗g(t)·g(1)−1 (J(p(1), q(1))).

But, p(1) = B∗(B(q(1))− y) and therefore, `(q) = 1
2‖p(1)‖2

[BB∗]−1 .

Conclusion: The gradient is a diffeomorphic deformation of the
gradient of the L2 loss.
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Local PL condition

Local PL

Set δ = mini 6=j |xi − xj | > 0 and D = maxi 6=j |xi − xj |.
Assuming K the kernel of V satisfies
λ(D, δ) Id 4 (K (xi , xj )) 4 Λ(D, δ) Id. Then, a local PL is satisfied, on
B(R) in L2([0, 1],V ), one has

c`(ξ) ≤ 2MReR‖∇`(ξ)‖2 (99)

‖∇`(ξ)‖2 ≤ 2MCReR`(ξ) . (100)

All critical points are global.

If loss is small enough, global convergence.

If iterates are bounded, then global convergence.

Global convergence is false: symmetries are preserved.

Open question: global convergence with random initialization

Reference: Global convergence of ResNets: From finite to infinite width using

linear parameterization, Barboni, Peyré, Vialard, 2022.
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Arnold’s remark on incompressible Euler

Sur la géométrie différentielle des groupes de Lie de dimension infinie et
ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst.
Fourier, 1966.

Theorem
The incompressible Euler equation is the geodesic flow of the
(right-invariant) L2 Riemannian metric on SDiff(M) (volume preserving
diffeomorphisms).

• An intrinsic point of view by Ebin and Marsden, Groups of
diffeomorphisms and the motion of an incompressible fluid, Ann. of
Math., 1970. Short time existence results for smooth initial
conditions.

• An extrinsic point of view by Brenier, relaxation of the variational
problem, optimal transport, polar factorization.
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Arnold’s remark continued
Rewritten in terms of the flow ϕ, the action reads∫ 1

0

∫
M

|∂tϕ(t, x)|2 dx dt , (101)

under the constraint

ϕ(t) ∈ SDiff(M) for all t ∈ [0, 1] . (102)

Riemannian submanifold point of view:

Let M ↪→ Rd be isometrically embedded: A smooth curve c(t) ∈ M is a
geodesic if and only if c̈ ⊥ Tc M.

Incompressible Euler in Lagrangian form:{
ϕ̈ = −∇p ◦ ϕ
ϕ(t) ∈ SDiff(M) .

(103)
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A geometric picture: Otto’s Riemannian submersion

SDiff(M): Isotropy

subgroup of µ

(Densp(M),W2) µ

Diff(M)

L2(M,M)

π(ϕ) = ϕ∗(µ)

Figure – A Riemannian submersion: SDiff(M) as a Riemannian submanifold of
L2(M,M): Incompressible Euler equation on SDiff(M)
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Incompressible Euler and optimal transport

Optimal transport appears in the projection onto SDiff in Brenier’s work.

What is the corresponding fluid dynamic equation for WFR?
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The Riemannian submersion for WFR

Isotropy

subgroup of µ

(Dens(M),WFR) µ

Diff(M) n C∞(M,R∗+)

L2(M, C(M))

π(ϕ, λ) = ϕ∗(λ2µ)

Figure – The same picture in our case: what is the corresponding equation to
Euler?
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The isotropy subgroup for unbalanced optimal transport
Recall that

π−1
0 ({ρ0}) = {(ϕ, λ) ∈ Diff(M)n C∞(M,R∗+) : ϕ∗(λ

2ρ0) = ρ0}

π−1
0 ({ρ0}) = {(ϕ,

√
Jac(ϕ)) ∈ Diff(M)n C∞(M,R∗+) : ϕ ∈ Diff(M)} .

The vertical space is

Vert(ϕ,λ) = {(v , α) ◦ (ϕ, λ) ; div(ρv) = 2αρ} , (104)

where (v , α) ∈ Vect(M)× C∞(M,R). The horizontal space is

Hor(ϕ,λ) =

{(
1

2
∇p, p

)
◦ (ϕ, λ) ; p ∈ C∞(M,R)

}
. (105)

The induced metric is

G (v , div v) =

∫
M

|v |2 dµ+
1

4

∫
M

| div v |2 dµ . (106)

The Hdiv right-invariant metric on the group of diffeomorphisms.
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The isotropy subgroup for unbalanced optimal transport
Recall that

π−1
0 ({ρ0}) = {(ϕ, λ) ∈ Diff(M)n C∞(M,R∗+) : ϕ∗(λ

2ρ0) = ρ0}

π−1
0 ({ρ0}) = {(ϕ,

√
Jac(ϕ)) ∈ Diff(M)n C∞(M,R∗+) : ϕ ∈ Diff(M)} .

The vertical space is

Vert(ϕ,λ) = {(v , α) ◦ (ϕ, λ) ; div(ρv) = 2αρ} , (104)

where (v , α) ∈ Vect(M)× C∞(M,R). The horizontal space is

Hor(ϕ,λ) =

{(
1

2
∇p, p

)
◦ (ϕ, λ) ; p ∈ C∞(M,R)

}
. (105)

The induced metric is

G (v , div v) =

∫
M

|v |2 dµ+
1

4

∫
M

| div v |2 dµ . (106)

The Hdiv right-invariant metric on the group of diffeomorphisms.
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Toward the incompressible Euler equation

Why? Unbalanced OT is linked to standard OT on the cone (Liero,
Mielke, Savaré).

Question

Understand Diff(M)n C∞(M,R∗+) as a subgroup of Diff(C(M))?

Answer

The cone C(M) is a trivial principal fibre bundle over M.
The automorphism group Aut(C(M)) ⊂ Diff(C(M)) can be identified
with Diff(M)n C∞(M,R∗+). One has (ϕ, λ) : (x , r) 7→ (ϕ(x), λ(x)r).

Recall that ψ ∈ Aut(C(M)) if ψ ∈ Diff(C(M)) and ∀λ ∈ R∗+ one has

ψ(λ · (x , r)) = λ · ψ(x , r) where λ · (x , r)
def.
= (x , λr).
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CH as an incompressible Euler equation
The geodesic equation on Diff(M)n C∞(M,R∗+){

D
Dt ϕ̇+ 2 λ̇λ ϕ̇ = −∇g P ◦ ϕ
λ̈r − λrg(ϕ̇, ϕ̇) = −2λrP ◦ ϕ .

(107)

can be extended to Aut(C(M)) as

D

Dt
(ϕ̇, λ̇r) = −∇ΨP ◦ (ϕ, λr) , (108)

where ΨP (x , r)
def.
= r 2P(x).

Question
Does there exist a density µ̃ on the cone such that
inj(Diff(M)) ⊂ SDiffµ̃(C(M))? (answer: yes)

Proof.

The measure µ̃
def.
= r−3 dr dµ where µ denotes the volume form on M.
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Results

Theorem
Let ϕ be the flow of a smooth solution to the Camassa-Holm equation

then Ψ(θ, r)
def.
= (ϕ(θ),

√
Jac(ϕ(θ))r) is the flow of a solution to the

incompressible Euler equation for the density 1
r4 r dr dθ.

Case where M = S1, M(ϕ) = [(θ, r) 7→ r
√
∂xϕ(θ)e iϕ(θ)] then the CH

equation is

{
∂tu − 1

4∂txx u u + 3∂x u u − 1
2∂xx u ∂x u − 1

4∂xxx u u = 0

∂tϕ(t, x) = u(t, ϕ(t, x)) .
(109)

The Euler equation on the cone, C(M) = R2 \ {0} for the density
ρ = 1

r4 Leb is {
v̇ +∇v v = −∇p ,

∇ · (ρv) = 0 .
(110)

where v(θ, r)
def.
=
(
u(θ), r

2∂x u(θ)
)
.
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