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Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von

Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and v; is a
constant W, speed geodesic from vy to vi.
For a Riemannian manifold M, TFAE:

® Displacement k-convexity of the relative entropy
K
H(v: | m) < (1 —t)H(wo | m) + tH(v1 | m) — Et(l — t)W5 (v, 11)

for any vo,v1 € Pa2(X).

Ric > k everywhere on M

approach by Paul-Marie Samson via Schrédinger bridges '20

For this purpose, let us briefly introduce the and Schrédinger
bridges.
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induced graph distance: d.
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When k=1:

At a lower temperature:

At zero temperature:

Figure: Image by C. Léonard illustrating the cooling procedure to obtain a Schrodinger
bridge
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One says that the graph space (X, d, m, L) has positive entropic curvature if
(C) holds with x > 0 and C¢(T) = kt2(7).

One says that the graph space (X, d, m, L) has positive W;-entropic curvature
if (C) holds with x1 > 0 and Ci(7) = &1 Wi (0, 11).
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Theorem (Main Theorem)
Let (X,d, m, L) be a graph space with
K :=sup K(z, S:(2)),

zeX

then the entropic curvature of the space (X, d, m, L) is bounded from below by

Kk = —2log(K).
If K < 1 then the space has positive entropic curvature k and k1 positive
Wh-entropic curvature (we have also bounds).

Concentration properties

Discrete functional inequalities such as discrete modified logarithmic Sobolev
inequality, Cheeger or discrete Poincaré type of inequalities can be derived.
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Entropic curvature for the hypercube
Let O, = {0,1}" be the discrete hypercube. Hamming distance :
d(x,y) = Z:'T:l Ly, for x,y € Qn.

@ @

Local structure of Q3
1 2
Ko(z, 5(2)) = max >02a1a2 + 20105 + 203 =1 — —— = 3
ajtaxtaz=l,a;>
4

In general for Q,, Ko(z,S2(2)) =1 — 2 thus k = —2log(1 — 1); k1 = 2 .

Complexity issues: the problem of computing w(G) of a graph is NP hard.
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A few words on the Ising model

Let Ga be a finite undirected graph with set of vertices A.
On each vertex v € A, o, takes the value up(+1) or down (-1).
The vector o = (ov, v € N) represents the state of the space and belongs to

O = {_13 1}/\
The of the system
H(o) = — Z Jwovow — Z hyoy
veow vev

where J,w, = Juw € R and h, € R; J, represents the interaction between spins
ov and oy, and h, represents the strength of the external magnetic field at
vertex v.

At temperature T, the distribution of the system is given by the

m(o) < e M) o c Q)

where [ is the inverse of the temperature T.
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Let mo denote the counting measure on Qp = {—1, l}A
and m,, = e~"mo be the measure
reversible with respect to the generator

LW(U, U'/) _ LO(O', o_/)e%(w(o)fw((,/))

for all o,0' € Op,0 £ 0’ .

w(z) = — Z hio; — g Z Jij oioyj, z € Q.

ien (i) EN2 inpj
Criterion for positive entropic curvature (when J; > 0 for simplicity):

/)(J) =1 )\max(J) (62 I max _ 1) .
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Let mp denote the counting measure on Qp = {—1,1}"
and m,, = e "“'mo be the measure
reversible with respect to the generator

Lu(0,0") = Lo(o, o’ )e2(()=w(e)
for all o,0' € Op,0 £ 0’ .
Ny, B oo
w(z) = — Z ioP — > Z i oioj, z € Qa.
ien (i) EN2 inpj
Criterion for positive entropic curvature (when J; > 0 for simplicity):

/)(J) =1- )\nmx(J)(ez M lmax _ 1) .

Eg:The simplest ferromagnetic model, J is the adjacency matrix A of the graph

Ga. In that case, |J|max = 1 and p(J) > 0 ]
A IN at case |J|ma an /)( ) as soon asﬂ< 2(1+A(G/\))
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Perturbation results on the hypercube and application for the Ising model

Let mp denote the counting measure on Qp = {—1,1}"
and m,, = e "“'mo be the measure
reversible with respect to the generator

Lu(0,0") = Lo(o,0")e2 (=)

for all 0,0’ € Qr,0 £ o' .

w(z) = — Z hioj — g Z Jijoioj, z € Q.

iehn (i) EN2 irpj

The simplest ferromagnetic model, J is the adjacency matrix A of the graph
Ga. In that case, |J|max = 1 and assoonas < ——2+— .
2(1+4(6n))
Curie-Weiss model 3 < 2—1n the Curie-Weiss for which some critical Poincaré
known to fail beyond 8. = %% Challenge
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