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Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.

For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani ’00,Cordero-McCann-Sumuckenslager ’01,von
Ranesse-Sturm ’05)

Let m be the reference measure of the Riemannian manifold, and νt is a
constant W2 speed geodesic from ν0 to ν1.
For a Riemannian manifold M, TFAE:

• Displacement κ-convexity of the relative entropy

H(νt | m) ≤ (1− t)H(ν0 | m) + tH(ν1 | m)− κ

2
t(1− t)W 2

2 (ν0, ν1)

for any ν0, ν1 ∈ P2(X ).

•
Ric ≥ κ everywhere onM

Discrete approach by Paul-Marie Samson via Schrödinger bridges ’20

For this purpose, let us briefly introduce the Discrete setting and Schrödinger
bridges.



Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Discrete setting
Some definitions, basic assumptions and dynamics

An undirected and connected graph G = (X ,E) where E ⊂ X × X . An
induced graph distance: d .

Two vertices x and y are neighbours if d(x , y) = 1:
x ∼ y . The maximum degree is denoted by ∆(G).

[x , y ] :=
{
z ∈ X

∣∣ z ∈ geodesic from x to y}.

The graph G is also endowed with a measure m on X and a generator L.

For any x , y ∈ X , one has

L(x , y) > 0 if and only if d(x , y) = 1,

and L(x , x) := −
∑

y∈X ,y 6=x L(x , y).
The measure m is reversible with respect to L, namely,

m(x)L(x , y) = m(y)L(y , x) ∀x , y ∈ X .

Definition of a graph space: (X , d ,m, L)
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Very informal introduction to Schrödinger Bridges

ν̂t(z) :=
∑

x,y∈X

νx,yt (z) π̂(x , y)

is a particular W1 constant speed geodesic between ν0 and ν1 on P(X ).
• ν̂0 = ν0, ν̂1 = ν1,
• For any 0 ≤ s ≤ t ≤ 1,

W1

(
ν̂t , ν̂s

)
= (t − s)W1(ν0, ν1).

Figure: Image by C. Léonard illustrating the cooling procedure to obtain a Schrödinger
bridge
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General convexity principle
Definition proposed by Samson 20’

Definition (Proposed by Samson ’20)

On the discrete space (X , d ,m, L), one says that the relative entropy is
C -displacement convex where C = (Ct)t∈[0,1],

if for any probability measures
ν0, ν1 ∈ P(X ) with bounded support, the Schrödinger bridge at zero
temperature (ν̂t)t∈[0,1] from ν0 to ν1, satisfies for any t ∈ (0, 1),

H(ν̂t |m) ≤ (1− t)H(ν0|m) + t H(ν1|m)− t(1− t)

2
Ct(π̂). (C)

t2(π̂) :=

∫ ∫
d(x , y)(d(x , y)− 1) d π̂(x , y).

One says that the graph space (X , d ,m, L) has positive entropic curvature if
(C) holds with κ > 0 and Ct(π̂) = κt2(π̂).

One says that the graph space (X , d ,m, L) has positive W1-entropic curvature
if (C) holds with κ1 > 0 and Ct(π̂) = κ1 W

2
1 (ν0, ν1).
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Preliminaries to the Main Theorem
Local information: the function K

(
z, S2(z)

)
For k = 1 or k = 2 and z ∈ X let the combinatorial sphere Sk :

Sk(z) :=
{
w ∈ X|d(z ,w) = k

}
.

KL

(
z ,S2(z)

)
:= sup

α

 ∑
z′′∈S2(z)

L2(z , z ′′)
∏

z′∈S1(z)∩[z,z′′]

(
α(z ′)

L(z , z ′)

) 2L(z,z′)L(z′,z′′)

L2(z,z′′)


(1)

α : S1(z)→ [0, 1],
∑

z′∈S1(z) α(z ′) = 1 .

L0(x , y) = 1 if and only if d(x , y) = 1→ ∆f (x) =
∑
y∼x

(f (y)− f (x)) .

Then (1) becomes:

K0

(
z , S2(z)

)
:= sup

α

 ∑
z′′∈S2(z)

∣∣S1(z) ∩ [z , z ′′]
∣∣( ∏

z′∈S1(z)∩[z,z′′]

α(z ′)
) 2∣∣S1(z)∩[z,z′′ ]

∣∣  .

(2)
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Main Theorem
From local information to global results

Theorem (Main Theorem)

Let (X , d ,m, L) be a graph space with

K := sup
z∈X

K
(
z ,S2(z)

)
,

then the entropic curvature of the space (X , d ,m, L) is bounded from below by
κ = −2 log(K).
If K < 1 then the space has positive entropic curvature κ and κ1 positive
W1-entropic curvature (we have also bounds).

Concentration properties

Discrete functional inequalities such as discrete modified logarithmic Sobolev
inequality, Cheeger or discrete Poincaré type of inequalities can be derived.
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Entropy curvature criteria: from local information to global results The paradigmatic example of the hypercube

Entropic curvature for the hypercube
Let Qn = {0, 1}n be the discrete hypercube.

Hamming distance :
d(x , y) =

∑n
i=1 1xi 6=yi for x , y ∈ Qn.

z A3

A1

A2

F

G

H

C1 C2

C3

Local structure of Q3

K0

(
z , S2(z)

)
= max
α1+α2+α3=1,αi≥0

2α1α2 + 2α1α3 + 2α2α3 = 1− 1

ω(G)
=

2

3

In general for Qn,K0

(
z , S2(z)

)
= 1− 1

n
thus κ = −2 log(1− 1

n
); κ1 = 4

n
.

Complexity issues: the problem of computing ω(G) of a graph is NP hard.
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A few words on the Ising model

Let GΛ be a finite undirected graph with set of vertices Λ.

On each vertex v ∈ Λ , σv takes the value up(+1) or down (-1).
The vector σ = (σv , v ∈ Λ) represents the state of the space and belongs to
QΛ = {−1, 1}Λ.
The hamiltonian (or energy) of the system

H(σ) = −
∑
v∼w

Jvwσvσw −
∑
v∈V

hvσv

where Jvw = Jwv ∈ R and hv ∈ R; Jvw represents the interaction between spins
σv and σw , and hv represents the strength of the external magnetic field at
vertex v .
At temperature T , the distribution of the system is given by the Gibbs
distribution

m(σ) ∝ e−βH(σ), σ ∈ QΛ

where β is the inverse of the temperature T .
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Perturbation results on the hypercube and application for the Ising model

Let m0 denote the counting measure on QΛ = {−1, 1}Λ

and mw = e−wm0 be the measure
reversible with respect to the generator

Lw (σ, σ′) = L0(σ, σ′)e
1
2

(w(σ)−w(σ′))

for all σ, σ′ ∈ QΛ, σ 6= σ′ .

w(z) := −
∑
i∈Λ

hiσi −
β

2

∑
(i,j)∈Λ2,i∼Λj

Jij σiσj , z ∈ QΛ.

Criterion for positive entropic curvature (when Jij ≥ 0 for simplicity):

ρ(J) := 1− λmax(J)
(
e2β|J|max − 1

)
.

Eg:The simplest ferromagnetic model, J is the adjacency matrix A of the graph
GΛ. In that case, |J|max = 1 and ρ(J) > 0 as soon as β < 1

2
(

1+∆(GΛ)
) .

Curie-Weiss model β < 1
2n

, the Curie-Weiss for which some critical Poincaré
known to fail beyond βc = 1

n
→ Challenge
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Tensorization properties for the entropic curvature,

Other models and a new
class of graphs: structured graphs of positive entropic curvature, Negative
curvature for geodetic graphs (e.g. trees), Relations with Ollivier’s and
Bakry-Émery curvatures...
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