▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Criteria for entropic curvature on discrete spaces through the lens of an example: the hypercube

New Monge Problems and Applications - Martin Rapaport, LAMA, Université Gustave Eiffel

Based on joint work with Paul-Marie Samson *Criteria for entropic curvature on discrete spaces* (Arxiv)

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

Entropy curvature criteria: from local information to global results

The paradigmatic example of the hypercube

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let *m* be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 .

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Displacement κ-convexity of the relative entropy

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Displacement κ-convexity of the relative entropy

$$H(
u_t \mid m) \leq (1-t)H(
u_0 \mid m) + tH(
u_1 \mid m) - rac{\kappa}{2}t(1-t)W_2^2(
u_0,
u_1)$$

for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$.

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Displacement κ-convexity of the relative entropy

$$H(
u_t \mid m) \leq (1-t)H(
u_0 \mid m) + tH(
u_1 \mid m) - rac{\kappa}{2}t(1-t)W_2^2(
u_0,
u_1)$$

for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$.

 $\mathit{Ric} \geq \kappa$ everywhere on \mathcal{M}

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Displacement κ-convexity of the relative entropy

$$H(
u_t \mid m) \leq (1-t)H(
u_0 \mid m) + tH(
u_1 \mid m) - rac{\kappa}{2}t(1-t)W_2^2(
u_0,
u_1)$$

for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$.

 $\mathit{Ric} \geq \kappa$ everywhere on \mathcal{M}

Discrete approach by Paul-Marie Samson via Schrödinger bridges '20

Definition of Ricci curvature via Optimal Transport

Theorem (Otto-Villani '00,Cordero-McCann-Sumuckenslager '01,von Ranesse-Sturm '05)

Let m be the reference measure of the Riemannian manifold, and ν_t is a constant W_2 speed geodesic from ν_0 to ν_1 . For a Riemannian manifold \mathcal{M} , TFAE:

Displacement κ-convexity of the relative entropy

$$H(
u_t \mid m) \leq (1-t)H(
u_0 \mid m) + tH(
u_1 \mid m) - rac{\kappa}{2}t(1-t)W_2^2(
u_0,
u_1)$$

for any $\nu_0, \nu_1 \in \mathcal{P}_2(\mathcal{X})$.

 $\mathit{Ric} \geq \kappa$ everywhere on \mathcal{M}

Discrete approach by Paul-Marie Samson via *Schrödinger bridges* '20 For this purpose, let us briefly introduce the *Discrete setting* and *Schrödinger bridges*.

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: d.

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: *d*. Two vertices *x* and *y* are neighbours if d(x, y) = 1: $x \sim y$.

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced *graph distance*: *d*. Two vertices *x* and *y* are *neighbours* if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: d. Two vertices x and y are neighbours if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

$$[x, y] := \Big\{ z \in \mathcal{X} \, \big| \, z \in \text{geodesic from } x \text{ to } y \Big\}.$$

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: *d*. Two vertices *x* and *y* are *neighbours* if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

$$[x, y] := \Big\{ z \in \mathcal{X} \, \big| \, z \in \text{geodesic from } x \text{ to } y \}.$$

The graph G is also endowed with a *measure* m on \mathcal{X} and a *generator* L.

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: *d*. Two vertices *x* and *y* are *neighbours* if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

$$[x, y] := \Big\{ z \in \mathcal{X} \, \big| \, z \in \text{geodesic from } x \text{ to } y \}.$$

The graph G is also endowed with a *measure* m on \mathcal{X} and a *generator* L. For any $x, y \in \mathcal{X}$, one has

L(x, y) > 0 if and only if d(x, y) = 1,

and $L(x,x) := -\sum_{y \in \mathcal{X}, y \neq x} L(x,y).$

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: *d*. Two vertices *x* and *y* are *neighbours* if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

$$[x, y] := \Big\{ z \in \mathcal{X} \mid z \in \text{geodesic from } x \text{ to } y \}.$$

The graph G is also endowed with a *measure* m on \mathcal{X} and a *generator* L. For any $x, y \in \mathcal{X}$, one has

L(x, y) > 0 if and only if d(x, y) = 1,

and $L(x,x) := -\sum_{y \in \mathcal{X}, y \neq x} L(x, y)$. The measure *m* is *reversible* with respect to *L*, namely,

$$m(x)L(x,y) = m(y)L(y,x) \quad \forall x,y \in \mathcal{X}.$$

Discrete setting

Some definitions, basic assumptions and dynamics

An undirected and connected graph $G = (\mathcal{X}, E)$ where $E \subset \mathcal{X} \times \mathcal{X}$. An induced graph distance: d. Two vertices x and y are neighbours if d(x, y) = 1: $x \sim y$. The maximum degree is denoted by $\Delta(G)$.

$$[x, y] := \Big\{ z \in \mathcal{X} \mid z \in \text{geodesic from } x \text{ to } y \}.$$

The graph G is also endowed with a *measure* m on \mathcal{X} and a *generator* L. For any $x, y \in \mathcal{X}$, one has

L(x, y) > 0 if and only if d(x, y) = 1,

and $L(x, x) := -\sum_{y \in \mathcal{X}, y \neq x} L(x, y)$. The measure *m* is *reversible* with respect to *L*, namely,

$$m(x)L(x,y) = m(y)L(y,x) \ \forall x,y \in \mathcal{X}.$$

Definition of a graph space: (\mathcal{X}, d, m, L)

The paradigmatic example of the hypercube 0000

Very informal introduction to Schrödinger Bridges

$$\widehat{
u_t}(z) := \sum_{x,y \in \mathcal{X}}
u_t^{x,y}(z) \, \widehat{\pi}(x,y)$$

Very informal introduction to Schrödinger Bridges

$$\widehat{\nu}_t(z) := \sum_{x,y \in \mathcal{X}} \nu_t^{x,y}(z) \,\widehat{\pi}(x,y)$$

is a particular W_1 constant speed geodesic between ν_0 and ν_1 on $\mathcal{P}(\mathcal{X})$.

Very informal introduction to Schrödinger Bridges

$$\widehat{\nu}_t(z) := \sum_{x,y \in \mathcal{X}} \nu_t^{x,y}(z) \,\widehat{\pi}(x,y)$$

is a particular W_1 constant speed geodesic between ν_0 and ν_1 on $\mathcal{P}(\mathcal{X})$.

•
$$\hat{\nu}_0 = \nu_0, \hat{\nu}_1 = \nu_1,$$

Very informal introduction to Schrödinger Bridges

$$\widehat{\nu_t}(z) := \sum_{x,y \in \mathcal{X}} \nu_t^{x,y}(z) \, \widehat{\pi}(x,y)$$

is a particular W_1 constant speed geodesic between ν_0 and ν_1 on $\mathcal{P}(\mathcal{X})$.

- $\hat{\nu}_0 = \nu_0, \hat{\nu}_1 = \nu_1,$
- For any $0 \le s \le t \le 1$,

 $W_1(\widehat{\nu_t},\widehat{\nu_s})=(t-s)W_1(\nu_0,\nu_1).$

Very informal introduction to Schrödinger Bridges

$$\widehat{\nu}_t(z) := \sum_{x,y \in \mathcal{X}} \nu_t^{x,y}(z) \,\widehat{\pi}(x,y)$$

is a particular W_1 constant speed geodesic between ν_0 and ν_1 on $\mathcal{P}(\mathcal{X})$.

- $\hat{\nu}_0 = \nu_0, \hat{\nu}_1 = \nu_1,$
- For any $0 \le s \le t \le 1$,

$$W_1(\widehat{
u_t},\widehat{
u_s})=(t-s)W_1(
u_0,
u_1).$$

Figure: Image by C. Léonard illustrating the cooling procedure to obtain a Schrödinger bridge

Very informal introduction to Schrödinger Bridges

$$\widehat{\nu}_t(z) := \sum_{x,y \in \mathcal{X}} \nu_t^{x,y}(z) \,\widehat{\pi}(x,y)$$

is a particular W_1 constant speed geodesic between ν_0 and ν_1 on $\mathcal{P}(\mathcal{X})$.

- $\hat{\nu}_0 = \nu_0, \hat{\nu}_1 = \nu_1,$
- For any $0 \le s \le t \le 1$,

$$W_1(\widehat{
u_t},\widehat{
u_s})=(t-s)W_1(
u_0,
u_1).$$

Figure: Image by C. Léonard illustrating the cooling procedure to obtain a Schrödinger bridge

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$,

The paradigmatic example of the hypercube 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measures $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support,

The paradigmatic example of the hypercube 0000

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measures $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, the Schrödinger bridge at zero temperature $(\hat{\nu}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0,1)$,

$$H(\widehat{\nu}_t|m) \le (1-t)H(\nu_0|m) + t H(\nu_1|m) - rac{t(1-t)}{2}C_t(\widehat{\pi}).$$
 (C)

The paradigmatic example of the hypercube 0000

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measures $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, the Schrödinger bridge at zero temperature $(\hat{\nu}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0,1)$,

$$H(\widehat{\nu}_t|m) \le (1-t)H(\nu_0|m) + t H(\nu_1|m) - rac{t(1-t)}{2}C_t(\widehat{\pi}).$$
 (C)

$$t_2(\widehat{\pi}) := \int \int d(x,y) (d(x,y)-1) \, d\widehat{\pi}(x,y)$$

The paradigmatic example of the hypercube 0000

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measures $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, the Schrödinger bridge at zero temperature $(\hat{\nu}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0,1)$,

$$H(\widehat{
u}_t|m) \leq (1-t)H(
u_0|m) + t H(
u_1|m) - rac{t(1-t)}{2}C_t(\widehat{\pi}).$$
 (C)

$$t_2(\widehat{\pi}) := \int \int d(x,y) (d(x,y)-1) \, d\widehat{\pi}(x,y).$$

One says that the graph space (\mathcal{X}, d, m, L) has positive entropic curvature if (C) holds with $\kappa > 0$ and $C_t(\hat{\pi}) = \kappa t_2(\hat{\pi})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The paradigmatic example of the hypercube 0000

General convexity principle

Definition proposed by Samson 20'

Definition (Proposed by Samson '20)

On the discrete space (\mathcal{X}, d, m, L) , one says that the relative entropy is *C*-displacement convex where $C = (C_t)_{t \in [0,1]}$, if for any probability measures $\nu_0, \nu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, the Schrödinger bridge at zero temperature $(\hat{\nu}_t)_{t \in [0,1]}$ from ν_0 to ν_1 , satisfies for any $t \in (0,1)$,

$$H(\widehat{\nu}_t|m) \le (1-t)H(\nu_0|m) + t H(\nu_1|m) - rac{t(1-t)}{2}C_t(\widehat{\pi}).$$
 (C)

$$t_2(\widehat{\pi}) := \int \int d(x,y) (d(x,y)-1) \, d\widehat{\pi}(x,y).$$

One says that the graph space (\mathcal{X}, d, m, L) has positive entropic curvature if (C) holds with $\kappa > 0$ and $C_t(\hat{\pi}) = \kappa t_2(\hat{\pi})$.

One says that the graph space (\mathcal{X}, d, m, L) has positive W_1 -entropic curvature if (C) holds with $\kappa_1 > 0$ and $C_t(\widehat{\pi}) = \kappa_1 W_1^2(\nu_0, \nu_1)$.

Preliminaries to the Main Theorem

Local information: the function $K(z, S_2(z))$

For k = 1 or k = 2 and $z \in \mathcal{X}$ let the combinatorial sphere S_k : $S_k(z) := \left\{ w \in \mathcal{X} | d(z, w) = k \right\}.$

Preliminaries to the Main Theorem

Local information: the function $K(z, S_2(z))$

For k = 1 or k = 2 and $z \in \mathcal{X}$ let the combinatorial sphere S_k : $S_k(z) := \Big\{ w \in \mathcal{X} | d(z, w) = k \Big\}.$

$$\begin{aligned} \mathcal{K}_{L}(z, S_{2}(z)) &:= \sup_{\alpha} \left\{ \sum_{z'' \in S_{2}(z)} L^{2}(z, z'') \prod_{z' \in S_{1}(z) \cap [z, z'']} \left(\frac{\alpha(z')}{L(z, z')} \right)^{\frac{2L(z, z')L(z', z'')}{L^{2}(z, z'')}} \right\} \\ \alpha &: S_{1}(z) \to [0, 1], \sum_{z' \in S_{1}(z)} \alpha(z') = 1 . \end{aligned}$$

Preliminaries to the Main Theorem

Local information: the function $K(z, S_2(z))$

For k = 1 or k = 2 and $z \in \mathcal{X}$ let the combinatorial sphere S_k : $S_k(z) := \Big\{ w \in \mathcal{X} | d(z, w) = k \Big\}.$

$$\begin{split} \mathcal{K}_{L}(z, S_{2}(z)) &:= \sup_{\alpha} \left\{ \sum_{z'' \in S_{2}(z)} L^{2}(z, z'') \prod_{z' \in S_{1}(z) \cap [z, z'']} \left(\frac{\alpha(z')}{L(z, z')} \right)^{\frac{2L(z, z')L(z', z'')}{L^{2}(z, z'')}} \right\} \\ \alpha &: S_{1}(z) \to [0, 1], \sum_{z' \in S_{1}(z)} \alpha(z') = 1 \;. \end{split}$$

 $L_0(x,y) = 1$ if and only if d(x,y) = 1

Preliminaries to the Main Theorem

Local information: the function $K(z, S_2(z))$

For k = 1 or k = 2 and $z \in \mathcal{X}$ let the combinatorial sphere S_k : $S_k(z) := \Big\{ w \in \mathcal{X} | d(z, w) = k \Big\}.$

$$\begin{aligned} \mathcal{K}_{L}(z, S_{2}(z)) &:= \sup_{\alpha} \left\{ \sum_{z'' \in S_{2}(z)} L^{2}(z, z'') \prod_{z' \in S_{1}(z) \cap [z, z'']} \left(\frac{\alpha(z')}{L(z, z')} \right)^{\frac{2L(z, z')L(z', z'')}{L^{2}(z, z'')}} \right\} \\ \alpha &: S_{1}(z) \to [0, 1], \sum_{z' \in S_{1}(z)} \alpha(z') = 1 \;. \end{aligned}$$

 $L_0(x,y) = 1$ if and only if $d(x,y) = 1 \rightarrow \Delta f(x) = \sum_{y \sim x} (f(y) - f(x))$.

Then (1) becomes:

Preliminaries to the Main Theorem

Local information: the function $K(z, S_2(z))$

For k = 1 or k = 2 and $z \in \mathcal{X}$ let the combinatorial sphere S_k : $S_k(z) := \Big\{ w \in \mathcal{X} | d(z, w) = k \Big\}.$

$$\mathcal{K}_{L}(z, S_{2}(z)) := \sup_{\alpha} \left\{ \sum_{z'' \in S_{2}(z)} L^{2}(z, z'') \prod_{z' \in S_{1}(z) \cap [z, z'']} \left(\frac{\alpha(z')}{L(z, z')} \right)^{\frac{2L(z, z')L(z', z'')}{L^{2}(z, z'')}} \right\}$$

$$(1)$$

$$\alpha : S_{1}(z) \to [0, 1], \sum_{z' \in S_{1}(z)} \alpha(z') = 1.$$

 $L_0(x,y) = 1$ if and only if $d(x,y) = 1 \rightarrow \Delta f(x) = \sum_{y \sim x} (f(y) - f(x))$.

Then (1) becomes:

$$\mathcal{K}_{0}(z, S_{2}(z)) := \sup_{\alpha} \left\{ \sum_{z'' \in S_{2}(z)} \left| S_{1}(z) \cap [z, z''] \right| \left(\prod_{z' \in S_{1}(z) \cap [z, z'']} \alpha(z') \right)^{\frac{2}{\left| S_{1}(z) \cap [z, z''] \right|}} \right\}.$$

$$(2)$$

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K := \sup_{z \in \mathcal{X}} K(z, S_2(z)),$$
Entropy curvature criteria: from local information to global results $\texttt{OOOOO} \bullet$

The paradigmatic example of the hypercube 0000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K:=\sup_{z\in\mathcal{X}}K(z,S_2(z)),$$

then the entropic curvature of the space (X, d, m, L) is bounded from below by $\kappa = -2 \log(K)$.

Entropy curvature criteria: from local information to global results $\texttt{OOOOO} \bullet$

The paradigmatic example of the hypercube 0000

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K:=\sup_{z\in\mathcal{X}}K(z,S_2(z)),$$

then the entropic curvature of the space (X, d, m, L) is bounded from below by $\kappa = -2 \log(K)$. If K < 1 then the space has positive entropic curvature κ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K:=\sup_{z\in\mathcal{X}}K(z,S_2(z)),$$

then the entropic curvature of the space (\mathcal{X}, d, m, L) is bounded from below by $\kappa = -2 \log(K)$. If K < 1 then the space has positive entropic curvature κ and κ_1 positive W_1 -entropic curvature (we have also bounds).

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K:=\sup_{z\in\mathcal{X}}K(z,S_2(z)),$$

then the entropic curvature of the space (\mathcal{X}, d, m, L) is bounded from below by $\kappa = -2\log(K)$. If K < 1 then the space has positive entropic curvature κ and κ_1 positive W_1 -entropic curvature (we have also bounds).

Concentration properties

The paradigmatic example of the hypercube 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Theorem

From local information to global results

Theorem (Main Theorem)

Let (\mathcal{X}, d, m, L) be a graph space with

$$K:=\sup_{z\in\mathcal{X}}K(z,S_2(z)),$$

then the entropic curvature of the space (\mathcal{X}, d, m, L) is bounded from below by $\kappa = -2\log(K)$. If K < 1 then the space has positive entropic curvature κ and κ_1 positive W_1 -entropic curvature (we have also bounds).

Concentration properties

Discrete functional inequalities such as discrete modified logarithmic Sobolev inequality, Cheeger or discrete Poincaré type of inequalities can be derived.

Entropy curvature criteria: from local information to global results 000000

The paradigmatic example of the hypercube •000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Entropic curvature for the hypercube

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube.

Entropic curvature for the hypercube

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $Q_n, K_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^n \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$.

Local structure of Q_3

 $\mathcal{K}_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} \frac{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3}{2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 + 2\alpha_2\alpha_3} = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \ \kappa_1 = \frac{4}{n}$.

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$. A1 A2 C3 A3 C1 z Local structure of Q_3 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} 2\alpha_1 \alpha_2 + 2\alpha_1 \alpha_3 + 2\alpha_2 \alpha_3 = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \kappa_1 = \frac{4}{n}$.

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i} \text{ for } x, y \in \mathcal{Q}_n.$ G н A1 A2 С3 A3 C2 z C1

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i} \text{ for } x, y \in \mathcal{Q}_n.$ G н A1 A2 С3 A3 C2 z C1

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i} \text{ for } x, y \in \mathcal{Q}_n.$ G н A1 A2 С3 A3 C2 z C1

Entropic curvature for the hypercube

Let $Q_n = \{0,1\}^n$ be the discrete hypercube. Hamming distance : $d(x,y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i} \text{ for } x, y \in \mathcal{Q}_n.$ G н A1 A2 С3 A3 C2 z C1

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$. A1 A2 С3 A3 C2 z C1 Local structure of Q_3 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} 2\alpha_1 \alpha_2 + 2\alpha_1 \alpha_3 + 2\alpha_2 \alpha_3 = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for Q_n , $K_0(z, S_2(z)) = 1 - \frac{1}{n}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$. A1 A2 С3 A3 C2 z C1 Local structure of Q_3 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} 2\alpha_1 \alpha_2 + 2\alpha_1 \alpha_3 + 2\alpha_2 \alpha_3 = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n});$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$. A1 A2 С3 A3 C2 z C1 Local structure of Q_3 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} 2\alpha_1 \alpha_2 + 2\alpha_1 \alpha_3 + 2\alpha_2 \alpha_3 = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1-\frac{1}{n}); \kappa_1 = \frac{4}{n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Let $Q_n = \{0, 1\}^n$ be the discrete hypercube. Hamming distance : $d(x, y) = \sum_{i=1}^{n} \mathbb{1}_{x_i \neq y_i}$ for $x, y \in Q_n$. A1 A2 -3 A3 C2 z Local structure of Q_3 $K_0(z, S_2(z)) = \max_{\alpha_1 + \alpha_2 + \alpha_3 = 1, \alpha_i \ge 0} 2\alpha_1 \alpha_2 + 2\alpha_1 \alpha_3 + 2\alpha_2 \alpha_3 = 1 - \frac{1}{\omega(G)} = \frac{2}{3}$ In general for $\mathcal{Q}_n, \mathcal{K}_0(z, S_2(z)) = 1 - \frac{1}{n}$ thus $\kappa = -2\log(1 - \frac{1}{n}); \kappa_1 = \frac{4}{n}$.

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

The hamiltonian (or energy) of the system

$$H(\sigma) = -\sum_{v \sim w} J_{vw} \sigma_v \sigma_w - \sum_{v \in V} h_v \sigma_v$$

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

The hamiltonian (or energy) of the system

$$H(\sigma) = -\sum_{v \sim w} J_{vw} \sigma_v \sigma_w - \sum_{v \in V} h_v \sigma_v$$

where $J_{vw} = J_{wv} \in \mathbb{R}$ and $h_v \in \mathbb{R}$;

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

The hamiltonian (or energy) of the system

$$H(\sigma) = -\sum_{v \sim w} J_{vw} \sigma_v \sigma_w - \sum_{v \in V} h_v \sigma_v$$

where $J_{vw} = J_{wv} \in \mathbb{R}$ and $h_v \in \mathbb{R}$; J_{vw} represents the interaction between spins σ_v and σ_w ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

The hamiltonian (or energy) of the system

$$H(\sigma) = -\sum_{v \sim w} J_{vw} \sigma_v \sigma_w - \sum_{v \in V} h_v \sigma_v$$

where $J_{vw} = J_{wv} \in \mathbb{R}$ and $h_v \in \mathbb{R}$; J_{vw} represents the interaction between spins σ_v and σ_w , and h_v represents the strength of the external magnetic field at vertex v.

A few words on the Ising model

Let G_{Λ} be a finite undirected graph with set of vertices Λ . On each vertex $v \in \Lambda$, σ_v takes the value up(+1) or down (-1). The vector $\sigma = (\sigma_v, v \in \Lambda)$ represents the state of the space and belongs to $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$.

The hamiltonian (or energy) of the system

$$H(\sigma) = -\sum_{v \sim w} J_{vw} \sigma_v \sigma_w - \sum_{v \in V} h_v \sigma_v$$

where $J_{vw} = J_{wv} \in \mathbb{R}$ and $h_v \in \mathbb{R}$; J_{vw} represents the interaction between spins σ_v and σ_w , and h_v represents the strength of the external magnetic field at vertex v.

At temperature T, the distribution of the system is given by the Gibbs distribution

$$m(\sigma) \propto e^{-\beta H(\sigma)}, \sigma \in \mathcal{Q}_{\Lambda}$$

where β is the inverse of the temperature T.
Perturbation results on the hypercube and application for the Ising model

Perturbation results on the hypercube and application for the Ising model

Let \textit{m}_0 denote the counting measure on $\mathcal{Q}_{\Lambda} = \{-1,1\}^{\Lambda}$ and

The paradigmatic example of the hypercube $OO \bullet O$

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $\mathcal{Q}_{\Lambda}=\{-1,1\}^{\Lambda}$ and $m_w=e^{-w}m_0$ be the measure

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

The paradigmatic example of the hypercube OO igodol O

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

The paradigmatic example of the hypercube $OO \bullet O$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

$$w(z) := -\sum_{i \in \Lambda} h_i \sigma_i - rac{eta}{2} \sum_{(i,j) \in \Lambda^2, i \sim \Lambda j} J_{ij} \sigma_i \sigma_j, \qquad z \in \mathcal{Q}_{\Lambda}.$$

The paradigmatic example of the hypercube $OO \bullet O$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

$$w(z) := -\sum_{i \in \Lambda} h_i \sigma_i - rac{eta}{2} \sum_{(i,j) \in \Lambda^2, i \sim_{\Lambda} j} J_{ij} \sigma_i \sigma_j, \qquad z \in \mathcal{Q}_{\Lambda}.$$

Criterion for positive entropic curvature (when $J_{ij} \ge 0$ for simplicity):

$$ho(J):=1-\lambda_{\max}(J)ig(e^{2eta|J|_{\max}}-1ig)\;.$$

The paradigmatic example of the hypercube $OO \bullet O$

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

$$w(z) := -\sum_{i \in \Lambda} h_i \sigma_i - rac{eta}{2} \sum_{(i,j) \in \Lambda^2, i \sim_{\Lambda} j} J_{ij} \sigma_i \sigma_j, \qquad z \in \mathcal{Q}_{\Lambda}.$$

Criterion for positive entropic curvature (when $J_{ij} \ge 0$ for simplicity):

$$ho(J):=1-\lambda_{\max}(J)ig(\mathrm{e}^{2eta|J|_{\max}}-1ig)\;.$$

Eg: The simplest ferromagnetic model, J is the adjacency matrix A of the graph G_{Λ} . In that case, $|J|_{\max} = 1$ and $\rho(J) > 0$ as soon as $\beta < \frac{1}{2(1+\Delta(G_{\Lambda}))}$.

The paradigmatic example of the hypercube $OO \bullet O$

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

$$w(z) := -\sum_{i \in \Lambda} h_i \sigma_i - rac{eta}{2} \sum_{(i,j) \in \Lambda^2, i \sim_{\Lambda} j} J_{ij} \sigma_i \sigma_j, \qquad z \in \mathcal{Q}_{\Lambda}.$$

Criterion for positive entropic curvature (when $J_{ij} \ge 0$ for simplicity):

$$ho(J) := 1 - \lambda_{\max}(J) \left(e^{2eta |J|_{\max}} - 1
ight) \,.$$

Eg: The simplest ferromagnetic model, J is the adjacency matrix A of the graph G_{Λ} . In that case, $|J|_{\max} = 1$ and $\rho(J) > 0$ as soon as $\beta < \frac{1}{2(1+\Delta(G_{\Lambda}))}$. Curie-Weiss model $\beta < \frac{1}{2n}$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The paradigmatic example of the hypercube $OO \bullet O$

Perturbation results on the hypercube and application for the Ising model

Let m_0 denote the counting measure on $Q_{\Lambda} = \{-1, 1\}^{\Lambda}$ and $m_w = e^{-w}m_0$ be the measure reversible with respect to the generator

$$L_w(\sigma,\sigma') = L_0(\sigma,\sigma')e^{\frac{1}{2}(w(\sigma)-w(\sigma'))}$$

for all $\sigma, \sigma' \in \mathcal{Q}_{\Lambda}, \sigma \neq \sigma'$.

$$w(z) := -\sum_{i \in \Lambda} h_i \sigma_i - rac{eta}{2} \sum_{(i,j) \in \Lambda^2, i \sim_{\Lambda} j} J_{ij} \sigma_i \sigma_j, \qquad z \in \mathcal{Q}_{\Lambda}.$$

Criterion for positive entropic curvature (when $J_{ij} \ge 0$ for simplicity):

$$ho(J) := 1 - \lambda_{\max}(J) \left(\mathrm{e}^{2eta |J|_{\max}} - 1
ight) \,.$$

Eg: The simplest ferromagnetic model, J is the adjacency matrix A of the graph G_{Λ} . In that case, $|J|_{max} = 1$ and $\rho(J) > 0$ as soon as $\beta < \frac{1}{2(1+\Delta(G_{\Lambda}))}$. *Curie-Weiss model* $\beta < \frac{1}{2n}$, the Curie-Weiss for which some critical Poincaré known to fail beyond $\beta_c = \frac{1}{n} \rightarrow$ Challenge

The paradigmatic example of the hypercube 000 \bullet

Tensorization properties for the entropic curvature,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The paradigmatic example of the hypercube $\bigcirc \bigcirc \bigcirc \bigcirc$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tensorization properties for the entropic curvature, Other models and a new class of graphs: *structured graphs* of positive entropic curvature,

The paradigmatic example of the hypercube $\bigcirc \bigcirc \bigcirc \bigcirc$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tensorization properties for the entropic curvature, Other models and a new class of graphs: *structured graphs* of positive entropic curvature, Negative curvature for geodetic graphs (e.g. trees),

The paradigmatic example of the hypercube $\bigcirc \bigcirc \bigcirc \bigcirc$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Tensorization properties for the entropic curvature, Other models and a new class of graphs: *structured graphs* of positive entropic curvature, Negative curvature for geodetic graphs (e.g. trees), Relations with Ollivier's and Bakry-Émery curvatures...

The paradigmatic example of the hypercube $\bigcirc \bigcirc \bigcirc \bigcirc$

Tensorization properties for the entropic curvature, Other models and a new class of graphs: *structured graphs* of positive entropic curvature, Negative curvature for geodetic graphs (e.g. trees), Relations with Ollivier's and Bakry-Émery curvatures...

Thank you very much for your attention !!!!

The paradigmatic example of the hypercube 000 \bullet

Tensorization properties for the entropic curvature, Other models and a new class of graphs: *structured graphs* of positive entropic curvature, Negative curvature for geodetic graphs (e.g. trees), Relations with Ollivier's and Bakry-Émery curvatures...

Thank you very much for your attention !!!!

