Stability of Schrödinger potentials: application to PDEs

# Maxime Laborde in collaboration with G. Carlier and L. Chizat

Université Paris Cité

New Monge Problems and Applications, Université Gustave Eiffel, Paris, September 14, 2023

### Motivation: Dynamical urban planning model

Solve

$$\begin{cases} \partial_t \rho_1 - \Delta \rho_1^{\rho} - \operatorname{div}(\rho_1 \nabla (V_1 + \varphi)) = 0, \\ \partial_t \rho_2 - \Delta \rho_2^{q} - \operatorname{div}(\rho_2 \nabla (V_2 + \psi)) = 0, \\ \rho_1(0, \cdot) = \rho_{1,0}, \, \rho_2(0, \cdot) = \rho_{2,0}, \end{cases}$$

on a compact, convex subset  $\Omega$  of  $\mathbb{R}^n$  with no-flux boundary conditions, where  $p, q \ge 1$ ,  $V_1$  and  $V_2$  are smooth potentials and  $\varphi$  and ,  $\psi$  are:

- Potentials of Kantorovich: Optimal transport problem
- Potentials of Schrödinger: Entropic regularization of optimal transport problem

# Plan

Optimal transport and urban planning

- 2 Wasserstein gradient flow
- 3 Entropic regularization
- Well-posedness without regularization
- 5 Open problems and future works

#### Table of contents

- Optimal transport and urban planning
  - 2 Wasserstein gradient flow
- 3 Entropic regularization
- Well-posedness without regularization
- 5 Open problems and future works

Classical Optimal Transport  $\mathcal{P}(\Omega)$ ,  $\Omega \subset \mathbb{R}^n$ 



• Static Monge problem (1781): given a source  $\rho_1 \in \mathcal{P}(\Omega)$  and a target  $\rho_2 \in \mathcal{P}(\Omega)$ 

$$\inf_{T} \left\{ \int_{\Omega} |x - T(x)|^2 \, d\rho_1(x) \, : \, \rho_2 = T_{\#} \rho_1 := \rho_1 \circ T^{-1} \right\}$$

#### No splitting of mass!

• Very nonlinear constraint: By a change of variable,  $\rho_2 = T_{\#}\rho_1$  is equivalent, at least formally, to solve the Monge-Ampère equation

 $\rho_2(T(x))\det[DT(x)]=\rho_1(x)$ 

### Wasserstein distance

• Kantorovich relaxation (1942):

$$W_2^2(\rho_1,\rho_2) = \min\left\{\iint_{\Omega\times\Omega} |y-x|^2 \, d\gamma(x,y) \, : \, \gamma \in \Pi(\rho_1,\rho_2)\right\},$$

where

$$\Pi(\rho_1,\rho_2) = \left\{ \gamma \in \mathcal{P}(\Omega \times \Omega) \, : \, \pi_{1\#}\gamma = \rho_1 \text{ and } \pi_{2\#}\gamma = \rho_2 \right\}.$$

 Wasserstein distance: W<sub>2</sub> define a metric on P(Ω) and an optimal γ is called optimal transport plan between ρ<sub>1</sub> and ρ<sub>2</sub>.

### Dual formulation and Brenier's theorem

Dual formulation:

$$\mathcal{W}_2^2(\rho_1,\rho_2)$$
  
= max  $\left\{ \int_{\Omega} \varphi(x) \, d\rho_1(x) + \int_{\Omega} \psi(x) \, d\rho_2(x) \, : \, \varphi(x) + \psi(y) \leqslant |x-y|^2 \right\}.$ 

Solutions  $(\varphi, \psi)$  are such that  $\psi = \varphi^c := \inf_y |x - y|^2 - \varphi(y)$  and  $\varphi$  is called Kantorovich potential.

### Theorem (Brenier 1989)

If  $\rho_1 \ll \mathcal{L}_{|\Omega}$ , then Kantorovich's problem admits a unique solution  $\gamma$  induced by a map T, i.e.  $\gamma = (Id, T)_{\#}\rho_1$ . Moreover, T is the gradient of a convex function and satisfies  $T = Id - \nabla \varphi$  where  $\varphi$  is a Kantorovich potential.

# Optimal transport and labour market [Carlier-Ekeland '04]

- $\rho_1, \rho_2$  are the densities of inhabitants and firms in a city  $\Omega \subset \mathbb{R}^2$ ,
- Commuting cost from x to y given by c(x, y), e.g.  $c(x, y) = |x y|^2$ ,
- Where to work? Optimization problem over commuting cost and salary,  $\psi(y)$ ,

$$\varphi(\mathbf{x}) = \inf_{\mathbf{y} \in \Omega} \left\{ \mathbf{c}(\mathbf{x}, \mathbf{y}) - \psi(\mathbf{y}) \right\}.$$

• Construction of a transport map:

$$T(x) = \operatorname{argmin} \left\{ c(x, y) - \psi(y) \right\}$$

Then the equilibrium constraint reads  $T_{\#}\rho_1 = \rho_2$ .

This problem is equivalent to solve the optimal transport problem

$$\inf_{\rho_2=\mathcal{T}_{\#}\rho_1}\int_{\Omega} c(\mathcal{T}(x), x) \, d\rho_1(x),$$

and  $\varphi$  and  $\psi$  are simply the Kantorovich potential associated to the dual problem.

Maxime Laborde

8/37

# Static urban planning model [Buttazzo-Santambrogio '05]

Optimal distribution in a city  $\Omega$ : Existence and characterization of minimizers of

$$(\rho_1, \rho_2) \mapsto W_2^2(\rho_1, \rho_2) + \mathcal{F}(\rho_1) + \mathcal{G}(\rho_2),$$

where

•  ${\mathcal F}$  represents a congestion effect for the inhabitants, for example

$$\mathcal{F}(\rho) = \int_{\Omega} F(\rho(x)) \, dx = \int_{\Omega} \frac{F(\rho(x))}{\rho(x)} \rho(x),$$

where *F* is convex and superlinear.  $\frac{F(\rho)}{\rho}$  is unhappiness of a citizen living at a place with density  $\rho$ .

•  ${\mathcal G}$  represents a concentration effect for the firms, for example

$$\mathcal{G}(\rho) := \iint_{\Omega \times \Omega} |x - y|^2 \, d\rho(x) d\rho(y).$$

### Table of contents

- Optimal transport and urban planning
- 2 Wasserstein gradient flow
- 3 Entropic regularization
- Well-posedness without regularization
- 5 Open problems and future works

### Wasserstein gradient flow

Energy:

 $\mathcal{E} \, : \, \mathcal{P}(\Omega) \times \mathcal{P}(\Omega) \longrightarrow (-\infty, +\infty]$ 

Otto's calculus:

$$\operatorname{grad}_{W_2} \mathcal{E}(\rho_1, \rho_2) = \begin{pmatrix} -\operatorname{div} \left( \rho_1 \nabla \frac{\delta \mathcal{E}}{\delta \rho_1}(\rho_1, \rho_2) \right) \\ -\operatorname{div} \left( \rho_2 \nabla \frac{\delta \mathcal{E}}{\delta \rho_2}(\rho_1, \rho_2) \right) \end{pmatrix},$$

where  $\frac{\delta \mathcal{E}}{\delta \rho}(\rho)$  is the first variation of  $\mathcal{E}$ .

Gradient flow of  $\mathcal{E}$ :

$$\begin{pmatrix} \partial_t \rho_1 \\ \partial_t \rho_2 \end{pmatrix} = -\operatorname{grad}_{W_2} \mathcal{E}(\rho_1, \rho_2) \qquad \Leftrightarrow \qquad \begin{cases} \partial_t \rho_1 = \operatorname{div} \left( \rho_1 \nabla \frac{\delta \mathcal{E}}{\delta \rho_1}(\rho_1, \rho_2) \right) \\ \partial_t \rho_2 = \operatorname{div} \left( \rho_2 \nabla \frac{\delta \mathcal{E}}{\delta \rho_2}(\rho_1, \rho_2) \right) \end{cases}$$

### Geodesic convexity

• Let  $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$  and  $\gamma$  an optimal transport plan between  $\rho_0$  and  $\rho_1$ . Define the Wasserstein geodesic  $t \mapsto \rho_t$  by

$$\rho^t := ((1-t)\pi_1 + t\pi_2)_{\#}\gamma.$$

A functional  $\mathcal{E}$  :  $(\rho_1, \dots, \rho_l) \mapsto \mathcal{E}(\rho_1, \dots, \rho_l)$  is said  $\lambda$ -geodesically convex if  $t \in [0, 1] \mapsto \mathcal{E}(\rho_1^t, \dots, \rho_l^t)$  is  $\lambda$ -convex.

• Examples:

•  $\mathcal{E}(\rho) = \int F(\rho)$  if F satisfies McCann's condition:

 $x \in (0, +\infty) \mapsto x^n F(x^{-n})$  is convex nonincreasing

• 
$$\mathcal{E}(\rho) = \int V\rho$$
 if  $V \lambda$ -convex

## Gradient flow and geodesic convexity

Ambrosio-Gigli-Savaré, '09

Assume  $\mathcal{E}$   $\lambda$ -geodesically convex then

- Existence and uniqueness of the gradient flow.
- Stability: Let  $\rho_t, \mu_t$  two solutions with initial conditions  $\rho_0, \mu_0$ , then

 $W_2(\rho_t,\mu_t) \leq e^{-\lambda t} W_2(\rho_0,\mu_0).$ 

### Dynamical urban planning model

In this talk: Dynamics of

•  $\mathcal{E}(\rho) = W_2^2(\rho_1, \rho_2) + \mathcal{F}(\rho_1) + \mathcal{G}(\rho_2)$ 

•  $\mathcal{E}(\rho) = W_{2,\epsilon}^2(\rho_1, \rho_2) + \mathcal{F}(\rho_1) + \mathcal{G}(\rho_2)$ 

where  $W_{2,\epsilon}$  is the entropic regularization of  $W_2$ .

### Table of contents

- Optimal transport and urban planning
- 2 Wasserstein gradient flow
- Intropic regularization
  - Well-posedness without regularization
  - 5 Open problems and future works

### Entropic regularization

Regularized optimal transport problem:

$$\mathcal{W}_{\boldsymbol{c},\epsilon}(\rho_1,\rho_2) := \inf_{\gamma \in \Pi(\rho_1,\rho_2)} \left\{ \iint_{\Omega \times \Omega} \boldsymbol{c}(\boldsymbol{x},\boldsymbol{y}) \, \boldsymbol{d}\gamma(\boldsymbol{x},\boldsymbol{y}) + \epsilon \iint_{\Omega \times \Omega} \gamma(\log(\gamma) - 1) \right\}.$$

Can be rewritten as

$$\mathcal{W}_{\boldsymbol{c},\epsilon}(\rho_1,\rho_2) = \epsilon \inf_{\gamma \in \Pi(\rho_1,\rho_2)} \mathcal{H}(\gamma | \boldsymbol{G}_{\epsilon}),$$

where  $G_{\epsilon} := e^{-rac{c}{\epsilon}}$  and  $\mathcal H$  is the relative entropy defined by

$$\mathcal{H}(\gamma|\mu) := \begin{cases} \int_{\Omega \times \Omega} (\log\left(\frac{d\gamma}{d\mu}\right) - 1) d\gamma & \text{ if } \gamma \ll \mu \\ +\infty & \text{ otherwise.} \end{cases}$$

 $\Gamma$ -convergence:  $\mathcal{W}_{c,\epsilon}$  Γ-converges to  $\mathcal{W}_c$  [Léonard '12, Carlier-Duval-Peyré-Schmitzer, '17]

### Addition of noise in the transport plan

[Benamou, Carlier, Cuturi, Nenna, Peyré, '15]



Marginals

#### Transport plans when $\epsilon$ increases

# Schrödinger system

• Change of reference measure: Define

$$E(\rho_1,\rho_2) := \inf_{\gamma \in \Pi(\rho_1,\rho_2)} \left\{ \iint_{\Omega \times \Omega} c(x,y) \, d\gamma(x,y) + \epsilon \mathcal{H}(\gamma|\rho_1 \otimes \rho_2) \right\}$$

Remark:  $\mathcal{W}_{c,\epsilon}(\rho_1,\rho_2) = \mathcal{E}(\rho_1,\rho_2) + \epsilon \mathcal{H}(\rho_1) + \epsilon \mathcal{H}(\rho_2).$ 

• Schrödinger system: Dual solutions  $(\phi_1, \phi_2)$  satisfies  $\rho_1 \otimes \rho_2$  a.e.

$$\begin{cases} \phi_1(x) = -\epsilon \log\left(\int_{\Omega} e^{\frac{\phi_2(y)}{\epsilon}} G_{\epsilon}(x, y) \, d\rho_2(y)\right) \\ \phi_2(y) = -\epsilon \log\left(\int_{\Omega} e^{\frac{\phi_1(x)}{\epsilon}} G_{\epsilon}(x, y) \, d\rho_1(x)\right) \end{cases}$$

• same regularity as c and unique in  $ilde{\mathcal{C}^k}:=\mathcal{C}^k imes\mathcal{C}^k/\sim$  where

 $(\phi_1,\phi_2)\sim(\psi_1,\psi_2)\quad\Leftrightarrow\quad \exists\kappa\in\mathbb{R}\text{ such that }\phi_1=\psi_1+\kappa\text{ and }\phi_2=\psi_2-\kappa$ 

### Formal gradient flow

Formally, a Wasserstein gradient flow of  $\mathcal{W}_{c,\epsilon}$  satisfies

$$\begin{cases} \partial_t \rho_1 - \mathsf{div}(\rho_1 \nabla \phi_1) - \epsilon \Delta \rho_1 = 0, \\ \partial_t \rho_2 - \mathsf{div}(\rho_2 \nabla \phi_2) - \epsilon \Delta \rho_2 = 0, \\ \rho_1(0, \cdot) = \rho_{1,0}, \, \rho_2(0, \cdot) = \rho_{2,0}, \end{cases}$$

where  $(\phi_1, \phi_2)$  are Schrödinger potentials for  $E(\rho_1, \rho_2)$ .

#### $\rightsquigarrow$ Need regularity on the Schrödinger map:

 $S: (\rho_1, \rho_2) \longmapsto (\phi_1, \phi_2)$ 

### Lipschitz stability of the Schrödinger map

### Theorem (Carlier-Chizat-L., '22)

For  $k \in \mathbb{N}^*$ , assume that  $c \in \mathcal{C}^{k+1}(\Omega)$ . The Schrödinger map  $S : \mathcal{P}(\Omega)^2 \to \tilde{\mathcal{C}^k}$  is Lipschitz continuous, i.e. there exists C > 0 such that, for all  $(\rho_1, \rho_2), (\mu_1, \mu_2) \in \mathcal{P}(\Omega)^4$ ,

 $\|S(\rho_1,\rho_2) - S(\mu_1,\mu_2)\|_{\tilde{\mathcal{C}}^k} \leq C(W_2^2(\rho_1,\mu_1) + W_2^2(\rho_2,\mu_2))^{1/2}.$ 

### Idea of proof

Denote  $\boldsymbol{\rho} = (\rho_1, \rho_2)$  and  $\boldsymbol{\phi} = (\phi_1, \phi_2)$ 

Rewrite the Schrödinger system as

$$F(\boldsymbol{\phi}, \boldsymbol{\rho}) = 0$$

• For any optimal transport plan  $\gamma \in \Pi(\rho, \mu)$ , consider the interpolation

$$\boldsymbol{\rho}_t = ((1-t)\pi_1 + t\pi_2)_{\#}\boldsymbol{\gamma}$$

Apply the implicit function theorem to

$$G: \begin{array}{cc} \tilde{\mathcal{C}}^k \times [0,1] & \longrightarrow \tilde{\mathcal{C}}^k \\ (\boldsymbol{\rho},t) & \longmapsto \mathcal{F}(\boldsymbol{\phi},\boldsymbol{\rho}_t) \end{array}$$

### Displacement smoothness and well-posedness

### Corollary (Carlier-Chizat-L., '22)

If  $c \in C^2$ , then there exists  $\lambda > 0$  such that E and -E are  $(-\lambda)$ -displacement convex.

 $\Rightarrow$  Existence and uniqueness of Wasserstein gradient flow of  $\mathcal{W}_{c,\epsilon}$ 

$$\left\{ \begin{array}{l} \partial_t \rho_1 - \mathsf{div}(\rho_1 \nabla \phi_1) - \epsilon \Delta \rho_1 = 0, \\ \partial_t \rho_2 - \mathsf{div}(\rho_2 \nabla \phi_2) - \epsilon \Delta \rho_2 = 0, \\ \rho_1(0, \cdot) = \rho_{1,0}, \, \rho_2(0, \cdot) = \rho_{2,0}, \end{array} \right.$$

### Asymptotic convergence

#### Proposition (Carlier-Chizat-L., '22)

Assume that  $\mathcal{H}(\rho_i^0) < +\infty$  for every *i*, then  $\rho_t$ , the WGF of  $\mathcal{W}_{c,\epsilon}$ , converges at an exponential rate to the equilibrium  $\rho^*$ , defined by

$$\rho_i^*(x) = \frac{\int_{\Omega} e^{-c(x,y)/\epsilon} \mathrm{d}y}{\int_{\Omega^2} e^{-c/\epsilon}}$$

i.e. there exists  $\kappa > 0$  independent of  $\rho^0$  such that

$$\mathcal{W}_{\boldsymbol{c},\epsilon}(\boldsymbol{\rho}_t) - \mathcal{W}_{\boldsymbol{c},\epsilon}(\boldsymbol{\rho}^*) \leq e^{-\kappa t} (\mathcal{W}_{\boldsymbol{c},\epsilon}(\boldsymbol{\rho}^0) - \mathcal{W}_{\boldsymbol{c},\epsilon}(\boldsymbol{\rho}_*)).$$

**Remark**: *E* is not  $\lambda$ -geodesically convex with  $\lambda > 0$ 

# Idea of proof

Note the identities

$$E(\boldsymbol{\rho}) = \sum_{i=1}^{2} \int_{\Omega} S_{i}(\boldsymbol{\rho}) \mathrm{d}\rho_{i}, \quad \mathcal{W}_{c,\epsilon}(\boldsymbol{\rho}) = \epsilon \sum_{i=1}^{2} \mathcal{H}(\rho_{i}|e^{-S_{i}(\boldsymbol{\rho})/\epsilon})$$

Using the chain rule and an integration by parts

$$\frac{d\mathcal{W}_{\mathsf{c},\epsilon}}{dt}(\boldsymbol{\rho}_t) = -\epsilon \left( \mathcal{I}_1(\rho_1 | e^{-S_1(\boldsymbol{\rho}_t)/\epsilon}) + \mathcal{I}_2(\rho_2 | e^{-S_2(\boldsymbol{\rho}_t)/\epsilon}) \right)$$

where  $\ensuremath{\mathcal{I}}$  is the relative Fisher information

$$\mathcal{I}_{i}(\rho|e^{-V}) := \int_{\Omega} \left\| \nabla \log \left( \frac{\rho}{e^{-V}} \right) \right\|^{2} \mathrm{d}\rho.$$

• Apply Log-Sobolev inequality:  $\exists \kappa = \kappa(\Omega, \mathbf{c}, \epsilon) > 0$  such that

$$\mathcal{I}_{i}(\rho_{i}|e^{-S_{i}(\boldsymbol{\rho}_{t})/\epsilon}) \geq -\kappa \mathcal{H}(\rho_{i}|e^{-S_{i}(\boldsymbol{\rho}_{t})/\epsilon}).$$

#### Conclusion: Gronwall's Lemma

### Extensions

- Multi-Marginal case: The existence and uniqueness can be extended to systems with more than 2 populations.
- Numerical algorithm: Based on Sinkhorn algorithm (iterate  $\phi_1$  and  $\phi_2$  in the fixed point problem)

Previous applications: Wasserstein barycenter ([Cuturi-Doucet '14], [Benamou-Carlier-Cuturi-Nenna-Peyré '15]), Multi-marginal optimal transport ([BCCNP '15], [Nenna '16]), Wasserstein gradient flows ([Peyré '15]), etc.

### Table of contents

- Optimal transport and urban planning
- 2 Wasserstein gradient flow
- 3 Entropic regularization
- Well-posedness without regularization
  - 5 Open problems and future works

Gradient flow of  $\mathcal{E} = W_2^2(\rho_1, \rho_2) + \mathcal{F}(\rho_1) + \mathcal{G}(\rho_2)$ 

Since (see for example Santambrogio's book Optimal Transport for Applied Mathematicians)

$$\frac{\delta W_2^2(\cdot,\mu)}{\delta \rho}(\rho) = \varphi,$$

where  $\varphi$  is a Kantorovich potential i.e. belongs to

$$\left\{\varphi \, : \, \int_{\Omega} \varphi \rho + \int_{\Omega} \varphi^{\mathsf{c}} \mu = \mathsf{W}_2^{\mathsf{p}}(\rho,\mu) \right\}.$$

Formally: Wasserstein gradient flow of

$$\mathcal{E}(\rho_1, \rho_2) := W_2^2(\rho_1, \rho_2) + \sum_{i=1}^2 \int_{\Omega} (\rho_i \log(\rho_i) + V_i \rho_i)$$

solves

$$\begin{cases} \partial_t \rho_1 - \Delta \rho_1 - \operatorname{div}(\rho_1 \nabla V_1) + \operatorname{div}(\rho_1 \nabla \varphi) = 0, \\ \partial_t \rho_2 - \Delta \rho_2 - \operatorname{div}(\rho_2 \nabla V_2) + \operatorname{div}(\rho_2 \nabla \psi) = 0, \end{cases}$$
(1)

where  $(\varphi(t), \psi(t))$  is a pair of Kantorovich potential of  $W_2(\rho_1(t), \rho_2(t))$ , t-a.e.

Maxime Laborde

### Remark on geodesic convexity

• Geodesic convexity of  $W_2^2$ : if c is a  $C^2$  convex function such that  $\partial_{i,j}c \leq 0$  for all  $i \neq j$  in dimension 1

• Existence and uniqueness in dimension 1

• Higher dimension:  $W_2^2$  is not geodesically convex!! open problem

### Remark: system coupled by Monge-Ampère equation

Since  $\psi = \varphi^c = \inf_y \frac{|\cdot - y|^2}{2} - \varphi(y)$ , and the optimal transport map  $T = Id - \nabla \varphi$  satisfies the Monge-Ampère equation,

 $\rho_2(T)\det[DT]=\rho_1.$ 

Then, the system is equivalent to

$$\begin{cases} \partial_t \rho_1 - \Delta \rho_1 - \operatorname{div}(\rho_1 \nabla V_1) + \operatorname{div}(\rho_1 \nabla \varphi) = 0, \\ \partial_t \rho_2 - \Delta \rho_2 - \operatorname{div}(\rho_2 \nabla V_2) + \operatorname{div}(\rho_2 \nabla \varphi^c) = 0, \\ \rho_2 (Id - \nabla \varphi) \det[I - D^2 \varphi] = \rho_1, \end{cases}$$
(2)

where  $\varphi^c$  is the *c*-transform of  $\varphi$ ,  $\varphi^c(x) = \inf_y \frac{|x-y|^2}{2} - \varphi(y)$ , and  $\frac{|x|^2}{2} - \varphi$  is convex.

### Weak formulation for $\operatorname{div}(\rho_1 \nabla \varphi)$

For an optimal transport plan  $\gamma$  and a Kantorovich potential  $\varphi$  we have

 $\nabla \varphi(\mathbf{x}) = \mathbf{x} - \mathbf{y} \qquad \gamma - \mathbf{a}.\mathbf{e}.$ 

Then, for all  $\Phi \in \mathcal{C}^\infty_c([0,+\infty] \times \mathbb{R}^n)$ ,

$$\int_{0}^{+\infty} \int_{\Omega} \nabla \Phi(t, x) \cdot \nabla \varphi(t, x) \rho_{1}(t, x) \, dx dt$$
  
= 
$$\int_{0}^{+\infty} \int_{\Omega \times \Omega} \nabla \Phi(t, x) \cdot \nabla \varphi(t, x) \, d\gamma(t, x, y) \, dt$$
  
= 
$$\int_{0}^{+\infty} \int_{\Omega \times \Omega} \nabla \Phi(t, x) \cdot (x - y) \, d\gamma(t, x, y) \, dt.$$

where  $\gamma(t)$  is the optimal transport plan for  $W_2(\rho_1(t), \rho_2(t))$ , t-a.e.

The nonlinear term  $\rho_1 \nabla \varphi$  is replaced by a linear term in  $\gamma$ 

### Weak solutions

A weak solution of (2) is a curve  $t \in (0, +\infty) \mapsto (\rho_1(t), \rho_2(t)) \in \mathcal{P}^{ac}(\Omega)^2$  such that  $\rho_i \in L^1((0, T); \mathcal{W}^{1,1}(\Omega))$  for all  $T < +\infty$  and for all  $\Phi \in \mathcal{C}^{\infty}_c([0, +\infty] \times \mathbb{R}^n)$ ,

$$\int_{0}^{+\infty} \left( \int_{\Omega} \partial_{t} \Phi \rho_{1} \, dx - \int_{\Omega} \nabla \Phi \cdot (\nabla \rho_{1} + \nabla V_{1} \rho_{1}) \right. \\ \left. - \int_{\Omega \times \Omega} (x - y) \cdot \nabla \Phi(t, x) \, d\gamma(t, x, y) \right) \, dt = - \int_{\Omega} \Phi(0, x) \rho_{1,0}(x) \, dx,$$

and

$$\int_{0}^{+\infty} \left( \int_{\Omega} \partial_t \Phi \rho_2 \, dx - \int_{\Omega} \nabla \Phi \cdot (\nabla \rho_2 + \nabla V_2 \rho_2) \right. \\ \left. - \int_{\Omega \times \Omega} (y - x) \cdot \nabla \Phi(t, y) \, d\gamma(t, x, y) \right) \, dt = - \int_{\Omega} \Phi(0, x) \rho_{2,0}(x) \, dx,$$

where  $\gamma(t)$  is the optimal transport plan for  $W_2(\rho_1(t), \rho_2(t))$ , t-a.e.

### Existence Theorem

### Theorem (L. '20)

Assume that  $\rho_{1,0}$  and  $\rho_{2,0}$  have finite Entropy, then system (2) admits at least one weak solution.

JKO scheme ([De Giorgi, '93],[Jordan, Kinderlehrer, Otto,'98], [Ambrosio, Gigli, Savaré, '05] : Given h > 0, construct  $(\rho_1^k, \rho_2^k)$  by induction

$$(\rho_1^{k+1}, \rho_2^{k+1}) = \operatorname{argmin} \sum_{i=1}^2 \frac{1}{2h} W_2^2(\rho_i, \rho_i^k) + \mathcal{E}_1(\rho_1) + \mathcal{E}_2(\rho_2) + W_2^2(\rho_1, \rho_2).$$
(3)

where

$$\mathcal{E}_{i}(\rho) = \begin{cases} \int_{\Omega} \rho \log(\rho) + V_{i}\rho & \text{if } \rho \ll \mathcal{L}, \\ +\infty & \text{otherwise,} \end{cases}$$

 $\rho_{i,h}$ : piecewise interpolation in time of  $(\rho_i^k)_k$ .

# Extensions (1)

More than 2 populations and more general cost functions: Multi-Marginal Optimal Transport problems

$$W_2^2(\rho_1,\rho_2) \rightsquigarrow \mathcal{W}_c(\rho_1,\ldots,\rho_l) = \inf_{\gamma \in \Pi(\rho_1,\ldots,\rho_l)} \int_{\Omega'} c(x_1,\ldots,x_l) d\gamma.$$

Application to gradient flow of Wasserstein Barycenter [Agueh-Carlier 2010]

# Extensions (2)

Different transport problems for each population: Semi-implicit JKO scheme (introduced by [DiFrancesco and Fagioli '14])

$$\rho_i^{k+1} \in \operatorname{argmin}_{\rho} \frac{1}{2h} W_2^2(\rho, \rho_i^k) + 2h(\mathcal{E}_i(\rho) + \mathcal{W}_{c_i}^k(\rho)),$$

where,

$$\mathcal{W}_{c_i}^k(\rho) = \mathcal{W}_{c_i}(\rho_1^k, \dots, \rho_{i-1}^k, \rho, \rho_{i+1}^k, \dots, \rho_l^k).$$

Main argument:  $\mathcal{W}_{c_i}^k$  is Lipschitz in the Wasserstein space  $\Rightarrow$  time compactness.

### Table of contents

- Optimal transport and urban planning
- 2 Wasserstein gradient flow
- 3 Entropic regularization
- Well-posedness without regularization
- Open problems and future works

### Open problems and future works

- Uniqueness or not in dimension  $d \ge 2$  for the non regularized problem with smooth initial data
- Γ-Convergence of the gradient flow of the entropic regularization problem to the gradient flow of the optimal transport problem: Serfaty
  [Γ-convergence of gradient flows on Hilbert and metric spaces and applications
  ] or send ε and h to 0 in the same time during the JKO procedure
- Extension to different transport problem: taking into account the traffic congestion during the transport [Carlier-Santambrogio, '05 ] or a ring road going arround the city [Monsaingeon, '21]
- Asymptotic behaviour for the unregularized problem

Thank you for your attention!