# Monge problem on the real line approached from concave cost problems. 

New Monge Problems and Applications

Nicolas Juillet<br>Université de Haute-Alsace

Champs-sur-Marne, September 2023

## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Transport problem

Le $\mu, \nu \in \mathcal{P}(\mathbb{R})$. We denote by $\operatorname{Marg}(\mu, \nu)$ the space of transport plans.
Transport problem
Minimize

$$
f_{p}: \pi \in \operatorname{Marg}(\mu, \nu) \mapsto \iint|y-x|^{p} \mathrm{~d} \pi(x, y) .
$$

## The original Monge problem

In 1978 Monge formulated the problem in the following setting :

- The "déblai" and "remblai" are sets; the transports are maps
- The déblai and remblai are in $\mathbb{R}^{2}$ of $\mathbb{R}^{3}$.
- The cost is $c(x, y)=|y-x|^{p}$ for $\underline{p=1}$.


## Our "new" Monge problem

Our problem is not so far :

- The "déblai" and "remblai" are measures; the transports are plans
- The déblai and remblai are in $\mathbb{R}^{1}$.



## Different values of $p: p=1$

Transport problem
Minimize

$$
f_{1}: \pi \in \operatorname{Marg}(\mu, \nu) \mapsto \iint|y-x| \mathrm{d} \pi(x, y)
$$

Characterized by the non-uniqueness of the solution even for "nice" mesures (Ex : shelf of books).

## Different values of $p: p=0$

## Transport problem

Minimize

$$
f_{0}: \pi \in \operatorname{Marg}(\mu, \nu) \mapsto \iint|y-x|^{0} \mathrm{~d} \pi(x, y) .
$$

(Here $0^{0}=0$ and $x^{0}=1$ for $x>0$ ).
The minimal value of $f_{0}$ is the total variation of $\mu$ and $\nu$.

## Different values of $p: p=-1$

## Transport problem

Minimize

$$
f_{-1}: \pi \in \operatorname{Marg}(\mu, \nu) \mapsto \iint \frac{1}{|y-x|} \mathrm{d} \pi(x, y)
$$

(Here $0^{-1}=+\infty$ ).
Studied in
Cotar, Friesecke, Klüppelberg (2013) Density functional theory and optimal transportation with Coulomb cost.
Buttazzo, De Pascale, P. Gori-Giorgi (2012) Optimal-transport formulation of electronic density-functional theory.

## Different values of $p: p=2$ and $p>1$

Transport problem
Minimize

$$
f_{2}: \pi \in \operatorname{Marg}(\mu, \nu) \mapsto \iint|y-x|^{2} \mathrm{~d} \pi(x, y)
$$

## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Reference theorem

## Theorem

Let $p>1$ and $\mu, \nu$ be such that $\min \left\{f_{p}(\pi) \mid \pi \in \operatorname{Marg}(\mu, \nu)\right\}<+\infty$.
For every $\pi \in \operatorname{Marg}(\mu, \nu)$ the following statements are equivalent :
(1) $\pi$ is a minimizer of $f_{p}$.
(2) there exists $R \subset \mathbb{R}^{2}$ such that $\pi(R)=1$ and

$$
(x, y),\left(x^{\prime}, y^{\prime}\right) \in R \quad \text { implies } \quad x<x^{\prime} \Rightarrow y \leq y^{\prime} .
$$

(3) $\pi=\left(F_{\mu}^{-1}, F_{\nu}^{-1}\right)_{\#} \mathcal{L}^{1}$.

## Transporting without crossing




## Remarks

- No regularity assumption on $\mu$ and $\nu$.
- The optimal transport plan does not depend on $p \in(1,+\infty)$.
- It is uniquely determined.


## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Outline

(1) Introduction on the MK-transport problems on $\mathbb{R}$
(2) The quadratic transport problem $p>1$ and $p=1^{+}$
(3) The "concave case" $p<1$ and finally $p=1^{-}$

## Some literature around $p \in(0,1)$

For points :

- Statistics of noncoding RNAs : alignment and secondary structure prediction. Nechaev, Tamm, Valba (2011)
- Local matching indicators for transport problems with concave costs. Delon, Salomon, Sobelovski (2012)
- The Dyck bound in the concave 1-dimensional random assignment model. Caracciolo, D’Achille, Erba, Sportiello (2020)
For continuous measures :
- The geometry of optimal transportation. Gangbo, McCann (1996)
- Exact solutions to the transportation problem on the line. McCann (1999)


## Citation of Gangbo-McCann (1996)

[...] the concavity of the cost function favours a long trip and a shorter trip over two trips of average length; as a result, it can be efficient for two trucks carrying the same commodity to pass each other travelling opposite directions on the highway [...]. In optimal solutions, such 'pathologies" may nest on many scales, leading to a natural hierarchy among the regions [...].

## Remarks

- Uniqueness can happen if $\mu$ or $\nu$ is continuous.
- The optimal transport plan is not unique.
- The set of optimizers depends on $p \in(0,1)$.


## Theorem (J. 2020)

## Theorem

Let $\mu, \nu$ have finit 1st moment and $\pi \in \operatorname{Marg}(\mu, \nu)$. Let $q<1$.
The following are equivalent :
(1) Solution $L^{1-}$ There exists a sequence $\left(\pi_{n}, p_{n}\right)_{n}$ such that $\pi_{n} \rightarrow \pi$ where $\pi_{n}$ is a minimizer of $f_{p_{n}}$ and $p_{n} \nearrow 1$.
(2) Solution $L^{1, q} \pi$ minimizes $f_{1}$ and, minimizes $f_{q}$ among the minimizers.
(3) Monotonicity The route pairs on the top are forbidden :

(4) Simulation $\pi$ is the "excursion coupling".

## Example with pictures

Quantile coupling optimal for $c_{p}(x, y)=|y-x|^{p}, p>1$.


## Example with pictures

Excursion coupling
"optimal" for $c_{p}(x, y)=|y-x|^{p}, p \rightarrow 1^{-}$.


## Example with pictures

## Excursion coupling

"optimal" for $c_{p}(x, y)=|y-x|^{p}, p \rightarrow 1^{-}$.


## Example with pictures

Excursion coupling
"optimal" for $c_{p}(x, y)=|y-x|^{p}, p \rightarrow 1^{-}$.


## Example with pictures

Excursion coupling
"optimal" for $c_{p}(x, y)=|y-x|^{p}, p \rightarrow 1^{-}$.


## Example with pictures

## Excursion coupling

"optimal" for $c_{p}(x, y)=|y-x|^{p}, p \rightarrow 1^{-}$.



## Final remarks and questions

Remark:

- Dyck paths and parentheses
- Other approach of the selection by Di Marino and Louet (2018) The entropic regularization of the Monge problem on the real line.
Questions :
- Algorithms in $\mathbb{R}^{d}(d>1)$ for the concave case $(p<1)$ ?
- What happens in $\mathbb{R}^{d}$ for $d>1$ and $p=1^{-}$?
- Check the continuous tree approach.
- Other limit theorems for $p=p_{0}^{+}$and $p=p_{0}^{-}$?

