Monge problem on the real line approached from concave cost problems.

New Monge Problems and Applications

Nicolas Juillet

Université de Haute-Alsace

Champs-sur-Marne, September 2023

Outline

1 Introduction on the MK-transport problems on ${\mathbb R}$

2 The quadratic transport problem p > 1 and $p = 1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Outline

1 Introduction on the MK-transport problems on $\mathbb R$

2 The quadratic transport problem p>1 and $p=1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Transport problem

Le $\mu,\nu\in\mathcal{P}(\mathbb{R}).$ We denote by ${\rm Marg}(\mu,\nu)$ the space of transport plans. Transport problem

Minimize

$$f_p: \pi \in \mathsf{Marg}(\mu, \nu) \mapsto \iint |y - x|^p \mathrm{d}\pi(x, y).$$

The original Monge problem

In 1978 Monge formulated the problem in the following setting :

- The "déblai" and "remblai" are sets; the transports are maps
- The déblai and remblai are in \mathbb{R}^2 of \mathbb{R}^3 .
- The cost is $c(x,y) = |y x|^p$ for $\underline{p = 1}$.

Our "new" Monge problem

Our problem is not so far :

- The "déblai" and "remblai" are measures; the transports are plans
- The déblai and remblai are in \mathbb{R}^1 .
- The cost is $c(x,y) = |y x|^p$ for $\underline{p = 1 \varepsilon}$ or in fact $\underline{p = 1^-}$.

Different values of p: p = 1

Transport problem

Minimize

$$f_1: \pi \in \mathsf{Marg}(\mu, \nu) \mapsto \iint |y - x| \mathrm{d}\pi(x, y).$$

Characterized by the non-uniqueness of the solution even for "nice" mesures (Ex : shelf of books).

Different values of p: p = 0

Transport problem

Minimize

$$f_0: \pi \in \mathsf{Marg}(\mu, \nu) \mapsto \iint |y - x|^0 \mathrm{d}\pi(x, y).$$

(Here $0^0 = 0$ and $x^0 = 1$ for x > 0). The minimal value of f_0 is the *total variation* of μ and ν .

Different values of p: p = -1

Transport problem

Minimize

$$f_{-1}:\pi\in\mathsf{Marg}(\mu,\nu)\mapsto \iint \frac{1}{|y-x|}\mathrm{d}\pi(x,y).$$

(Here
$$0^{-1} = +\infty$$
).
Studied in
Cotar, Friesecke, Klüppelberg (2013) Density functional theory and
optimal transportation with Coulomb cost.
Buttazzo, De Pascale, P. Gori-Giorgi (2012) Optimal-transport
formulation of electronic density-functional theory.

Different values of p: p = 2 and p > 1

Transport problem

Minimize

$$f_2: \pi \in \mathsf{Marg}(\mu, \nu) \mapsto \iint |y - x|^2 \mathrm{d}\pi(x, y).$$

Outline

1 Introduction on the MK-transport problems on ${\mathbb R}$

2 The quadratic transport problem p > 1 and $p = 1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Outline

(1) Introduction on the MK-transport problems on ${\mathbb R}$

2 The quadratic transport problem p > 1 and $p = 1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Reference theorem

Theorem

Let p > 1 and μ, ν be such that $\min\{f_p(\pi) | \pi \in \operatorname{Marg}(\mu, \nu)\} < +\infty$. For every $\pi \in \operatorname{Marg}(\mu, \nu)$ the following statements are equivalent :

- **1** π is a minimizer of f_p .
- **2** there exists $R \subset \mathbb{R}^2$ such that $\pi(R) = 1$ and

$$(x,y), (x',y') \in R \quad \text{implies} \quad x < x' \Rightarrow y \leq y'.$$

 ${\rm \textbf{3}} \ \pi = (F_{\mu}^{-1},F_{\nu}^{-1})_{\#} {\mathcal L}^{1}.$

Remarks

- No regularity assumption on μ and ν .
- The optimal transport plan does not depend on $p \in (1, +\infty)$.
- It is uniquely determined.

Outline

1 Introduction on the MK-transport problems on ${\mathbb R}$

2 The quadratic transport problem p > 1 and $p = 1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Outline

 \blacksquare Introduction on the MK-transport problems on $\mathbb R$

2 The quadratic transport problem p > 1 and $p = 1^+$

3 The "concave case" p < 1 and finally $p = 1^-$

Some literature around $p \in (0, 1)$

For points :

- Statistics of noncoding RNAs : alignment and secondary structure prediction. Nechaev, Tamm, Valba (2011)
- Local matching indicators for transport problems with concave costs. Delon, Salomon, Sobelovski (2012)
- The Dyck bound in the concave 1-dimensional random assignment model. Caracciolo, D'Achille, Erba, Sportiello (2020)

For continuous measures :

- The geometry of optimal transportation. Gangbo, McCann (1996)
- Exact solutions to the transportation problem on the line. McCann (1999)

Citation of Gangbo-McCann (1996)

[...] the concavity of the cost function favours a long trip and a shorter trip over two trips of average length; as a result, it can be efficient for two trucks carrying the same commodity to pass each other travelling opposite directions on the highway [...]. In optimal solutions, such 'pathologies'' may nest on many scales, leading to a natural hierarchy among the regions [...].

Remarks

- Uniqueness can happen if μ or ν is continuous.
- The optimal transport plan is not unique.
- The set of optimizers depends on $p \in (0, 1)$.

Theorem (J. 2020)

Theorem

Let μ, ν have finit 1st moment and $\pi \in Marg(\mu, \nu)$. Let q < 1. The following are equivalent :

- **1** Solution L^{1-} There exists a sequence $(\pi_n, p_n)_n$ such that $\pi_n \to \pi$ where π_n is a minimizer of f_{p_n} and $p_n \nearrow 1$.
- **2** Solution $L^{1,q} \pi$ minimizes f_1 and, minimizes f_q among the minimizers.
- **8** Monotonicity The route pairs on the top are forbidden :

4 Simulation π is the "excursion coupling".

Quantile coupling

Excursion coupling

Excursion coupling

Excursion coupling

Excursion coupling

Final remarks and questions

Remark :

- Dyck paths and parentheses
- Other approach of the selection by Di Marino and Louet (2018) The entropic regularization of the Monge problem on the real line.

Questions :

- Algorithms in \mathbb{R}^d (d > 1) for the concave case (p < 1)?
- What happens in \mathbb{R}^d for d > 1 and $p = 1^-$?
- Check the continuous tree approach.
- Other limit theorems for $p = p_0^+$ and $p = p_0^-$?