Weak Optimal Transport with Unnormalized Kernels

Nathaël Gozlan

Université Paris Cité
New Monge Problems and Applications
14 september 2023
Outline

Work in collaboration with P. Choné and F. Kramarz

I - Weak Optimal Transport with (un)-normalized kernels: motivations and examples
II - General results: primal attainment, duality
III - The particular case of barycentric and conical costs
IV - Perspectives
I - Weak Optimal Transport with (un)-normalized kernels: motivations and examples
Let \mathcal{X}, \mathcal{Y} be Polish spaces and $\omega : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ a measurable function.

Definition

The optimal transport cost between two probability measures μ and ν is given by

$$T_\omega(\nu, \mu) = \inf_{\pi \in \Pi(\mu, \nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \omega(x, y) \, d\pi(x, y),$$

where $\Pi(\mu, \nu)$ denotes the set of probability measures π on $\mathcal{X} \times \mathcal{Y}$ having μ and ν as marginals (called 'transport plans between μ and ν').

Equivalently

$$T_\omega(\nu, \mu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[\omega(X, Y)]$$

Classical Examples: Kantorovich distances of order $p \geq 1$

$$W_p^p(\nu, \mu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[d^p(X, Y)]$$

(if $\mathcal{X} = \mathcal{Y}$ and d metrizes \mathcal{X}).
Weak Optimal Transport

Let \(\pi \in \Pi(\mu, \nu) \) be a transport plan between \(\mu \) and \(\nu \) written in disintegrated form

\[
d\pi(x, y) = d\mu(x) dp_x(y),
\]

with \(x \mapsto p_x \) a transition kernel (\(\mu \) a.s unique).

Interpretation: The kernel \(p_x \) tells where the mass coming from \(x \) is allocated over \(Y \).

If \(\omega: X \times Y \to \mathbb{R}^+ \) is a cost function then

\[
\int \int \omega(x, y) d\pi(x, y) = \int \left(\int \omega(x, y) dp_x(y) \right) d\mu(x).
\]

In other words, transports of mass coming from \(x \) are penalized through their mean cost: \(\int \omega(x, y) dp_x(y) \).

Idea of WOT: introduce more general penalizations.
Weak Optimal Transport (WOT)

Let $\mathcal{P}(\mathcal{Y})$ denote the set of all probability measures on \mathcal{Y}.

Definition

Let $c : \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}^+ \cup \{+\infty\}$; the weak optimal transport cost $\mathcal{T}_c(\mu, \nu)$ is defined by

$$\mathcal{T}_c(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int c(x, p_x) \, d\mu(x),$$

where $\mathcal{P}(\mu, \nu)$ is the set of all probability kernels p such that $\mu p = \nu$.

Classical transport:

$$c(x, p) = \int \omega(x, y) \, dp(y).$$

In all useful examples, the function c is convex in p.
Comments

- First examples go back to the works of K. Marton (1996) on concentration of measure.
- General tools (duality, cyclical monotonicity) have been developed to study weak transport problems. See Backhoff-Veraguas, Beiglböck, Pammer (2019).

Nice survey paper by Backhoff-Veraguas and Pammer (2020).
(1) **Barycentric transport**: $\mathcal{X} = \mathcal{Y} = \mathbb{R}^n$ and

$$c(x, p) = \theta \left(x - \int y \, dp(y) \right),$$

where $\theta : \mathbb{R}^n \to \mathbb{R}^+$ (convex).

We will denote by $\overline{T}_\theta(\mu, \nu)$ the corresponding weak optimal transport cost.

(2) **Transport with martingale constraints**: $\mathcal{X} = \mathcal{Y} = \mathbb{R}^n$ and

$$c(x, p) = \begin{cases} \int \omega(x, y) \, dp(y) & \text{if } \int y \, dp(y) = x \\ +\infty & \text{otherwise} \end{cases}$$

Beiglboeck-Juillet (2016)
Examples

(3) **Entropic regularized transport / Schrödinger bridges:**
Let R be a reference probability measure on $\mathcal{X} \times \mathcal{X}$

$$T_H(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} H(\pi|R),$$

where H is the relative entropy defined by

$$H(\pi|R) = \int \log \frac{d\pi}{dR} d\pi$$

if $\pi \ll R$ (and $+\infty$ otherwise).

Writing $d\pi(x, y) = d\mu(x)dp_x(y)$ and $dR(x, y) = dm(x)dr_x(y)$, one gets

$$H(\pi|R) = H(\mu|m) + \int H(p_x|r_x) d\mu(x) := H(\mu|m) + \int c(x, p_x) d\mu(x)$$

'Zero noise limit' : Mikami, Thieullen, Léonard, Carlier-Duval-Peyré,
Applications : Cutturi, Peyré,
Functional inequalities : Gentil-Léonard-Ripani, Gigli-Tamanini, Fathi-G.-Prod’homme,

(4) ...
From WOT to WOTUK: a toy example

A zoo contains several groups of animals. Each week, a certain amount of feed is received by the zoo. What is the best way to feed the animals?
A first modelization attempt with WOT

- \mathcal{X} is the finite set of all animals of the zoo
- \mathcal{Y} is the set of types of feed received by the zoo
- $\mu = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \delta_x$ is the distribution of animals
- $\nu \in \mathcal{P}(\mathcal{Y})$ is the distribution of feeds received by the zoo
- For $x \in \mathcal{X}$ and $p \in \mathcal{P}(\mathcal{Y})$,

 $$c(x, p)$$

 is some quantity reflecting the health of animal x when it is fed with the distribution of feeds p. By convention, we want to minimize this quantity.

- A coupling

 $$d \pi(x, y) = d\mu(x)dp_x(y) \in \Pi(\mu, \nu)$$

 gives a way to allocate the feed among animals. Here p_x represents the feed received by the animal x. The equation

 $$\nu = \mu p$$

 means that all the feed has been distributed.

- The best allocation is obtained by solving

 $$\mathcal{T}_c(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} c(x, p_x).$$
A first modelization attempt with WOT

Criticism:

- in this model, each animal x receives a fixed portion $1/|X|$ of the total amount of feed.
- $c(x, p)$ does not depend on the quantity of feed received by animal x but only on the composition of its meal.

We need to relax the WOT framework, in such a way that the quantity of food received by each animal becomes a new optimization parameter.
WOT with Unnormalized Kernels (WOTUK)

Denote by $\mathcal{M}(\mathcal{Y})$ the set of all non-negative finite measures on \mathcal{Y}.

Definition

Let $c : \mathcal{X} \times \mathcal{M}(\mathcal{Y}) \rightarrow \mathbb{R} \cup \{+\infty\}$; the unnormalized weak transport cost $I_c(\mu, \nu)$ between $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ is defined by

$$I_c(\mu, \nu) = \inf_{q \in Q(\mu, \nu)} \int c(x, q^x) \, d\mu(x),$$

where $Q(\mu, \nu)$ is the set of all non-negative kernels q (i.e $q^x(dy) \in \mathcal{M}(\mathcal{Y})$ for all $x \in \mathcal{X}$) such that $\mu q = \nu$.

If $q \in Q(\mu, \nu)$, then for all $x \in \mathcal{X}$,

$$q_x(dy) = \eta_xp_x(dy)$$

with $\int N(x) \, d\mu(dx) = 1$ and p a probability kernel transporting $\eta = N\mu$ onto ν.

Interpretation : $N(x)$ represents the quantity of feed received by animal x and p_x is the composition of its meal.

Remark

We deal with measures of probability only by convenience. The definition above also makes sense for positive measures μ, ν with possibly different masses.
Equivalent formulation

Let \(\Pi(\ll \mu, \nu) \) be the set of all probability measures \(\pi \) on \(\mathcal{X} \times \mathcal{Y} \) such that \(\pi_1 \) is absolutely continuous w.r.t \(\mu \).

For any \(\pi \in \Pi(\ll \mu, \nu) \), let

\[
I_c[\pi] = \int c \left(x, \frac{d\pi_1}{d\mu}(x)\pi_x \right) \, d\mu(x)
\]

where \(d\pi(x, y) = d\pi_1(x)d\pi_x(y) \).

Then, it holds

\[
\mathcal{I}_c(\mu, \nu) = \inf_{\pi \in \Pi(\ll \mu, \nu)} I_c[\pi].
\]

Indeed,

\[
\mathcal{I}_c(\mu, \nu) = \inf_{\eta \ll \mu} \inf_{p \in \mathcal{P}(\eta, \nu)} \int c \left(x, \frac{d\eta}{d\mu}(x)p_x \right) \, d\mu(x)
\]

\[
= \inf_{\eta \ll \mu} \inf_{\pi \in \Pi(\eta, \nu)} \int c \left(x, \frac{d\pi_1}{d\mu}(x)\pi_x \right) \, d\mu(x)
\]

\[
= \inf_{\pi \in \Pi(\ll \mu, \nu)} I_c[\pi].
\]
Economic motivation (Choné - Kramarz 2021)
Economic motivation (Choné - Kramarz 2021)

- \mathcal{X} is the space of firms types
- \mathcal{Y} is the space of workers skill’s profiles
- μ is the distribution of firms in a given economy (the sizes of the firms are unknown)
- ν is the distribution of workers in a given economy
- q^x represents the workers recruited by firm x.
 For instance $q^x(dy) = \sum_{i=1}^{k} n_i \delta_{y_i}$ means that firm x has recruited n_i workers with the skill profile y_i. Here the size of firm x is $N(x) = \sum_{i=1}^{k} n_i$.
- $-c(x, m)$ represents the output of firm x when it recruits a distribution of workers m.

Goal: Find the optimal allocation of workers to optimize the total output in the economy.
II - General results: primal attainment, duality
Primal attainment and duality for WOT

Theorem (Backhoff-Veraguas - Beiglboeck - Pammer (2018))

If \(c : \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R} \cup \{+\infty\} \) is jointly lower semi-continuous, lower bounded and convex in \(p \), then for all \(\mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y}) \), there exists \(p \in \mathcal{P}(\mu,\nu) \) such that

\[
\mathcal{T}_c(\mu,\nu) = \int c(x, p_x) \, d\mu(x).
\]

Moreover, the following Kantorovich type dual formula holds

\[
\mathcal{T}_c(\mu,\nu) = \sup_{f \in C_b(\mathcal{Y})} \left\{ \int R_c f \, d\mu - \int f \, d\nu \right\}, \quad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})
\]

with

\[
R_c f(x) = \inf_{p \in \mathcal{P}(\mathcal{Y})} \left\{ \int f \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.
\]

Links with backward linear mass transfers Bowles-Ghoussoub (2019).

Duality holds under more general conditions on the cost function: \(\mu, \nu \) have finite \(k \)-th moment and \(c \) is lower semicontinuous w.r.t \(W_k \) topology, \(k \geq 1 \).
Primal attainment and duality for WOTUK

\(\mathcal{X} \) and \(\mathcal{Y} \) will always be assumed to be compact.

Usual Assumptions :

(A) \(c \) can be written as

\[
c(x, m) = \sup_{k \in \mathbb{N}} \left\{ \int a_k(x, y) \, dm(y) + b_k(x) \right\}, \quad x \in \mathcal{X}, \quad \forall m \in \mathcal{M}(\mathcal{Y}),
\]

where, for all \(k \in \mathbb{N}, a_k : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \) and \(b_k : \mathcal{X} \rightarrow \mathbb{R} \) are continuous functions.

(B) for all \(x \in \mathcal{X} \) and \(m \in \mathcal{M}(\mathcal{Y}) \setminus \{0\},

\[
c'_\infty(x, m) := \lim_{\lambda \to \infty} \frac{c(x, \lambda m)}{\lambda} = +\infty.
\]

Remark

(A) implies in particular that \(c \) is lower bounded, convex w.r.t its second variable and jointly l.s.c.

Is there equivalence?
Theorem (CGK, 2023))

If \(c : \mathcal{X} \times \mathcal{M}(\mathcal{Y}) \to \mathbb{R} \cup \{+\infty\} \) satisfies Assumptions (A) and (B), then for all \(\mu \in \mathcal{P}(\mathcal{X}) \) and \(\nu \in \mathcal{P}(\mathcal{Y}) \), there exists \(q \in Q(\mu, \nu) \) such that

\[
\mathcal{I}_c(\mu, \nu) = \int c(x, q_x) \, d\mu(x).
\]

Moreover, the following Kantorovich type dual formula holds

\[
\mathcal{I}_c(\mu, \nu) = \sup_{f \in \mathcal{C}_b(\mathcal{Y})} \left\{ \int K_c f \, d\mu - \int f \, d\nu \right\}, \quad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})
\]

with

\[
K_c f(x) = \inf_{m \in \mathcal{M}(\mathcal{Y})} \left\{ \int f \, dm + c(x, m) \right\}, \quad x \in \mathcal{X}.
\]
Sketch of proof for primal attainment

As observed earlier,

\[I_c(\mu, \nu) = \inf_{\pi \in \Pi(\ll \mu, \nu)} I_c[\pi], \]

where

\[\Pi(\ll \mu, \nu) \]

is the set of probability measures on \(\mathcal{X} \times \mathcal{Y} \) such that \(\pi_1 \) is absolutely continuous w.r.t \(\mu \) and

\[I_c[\pi] = \int c \left(x, \frac{d\pi_1}{d\mu}(x)\pi_x \right) d\mu(x) \]

with \(d\pi(x, y) = d\pi_1(x)d\pi_x(y) \).

Using Assumption (A), one can show that \(I_c \) is lower semicontinuous on \(\Pi(\ll \mu, \nu) \).
Sketch of proof for primal attainment

For simplicity, suppose that there exists a convex function $\phi : \mathbb{R}^+ \to \mathbb{R}$ such that $\phi(x)/x \to +\infty$ and

\[(B') \quad c(x, m) \geq \phi(m(Y)), \quad \forall x \in \mathcal{X}, \forall m \in \mathcal{M}(Y).\]

Then Assumption (B) holds.

Take π_n a sequence such that $I_c[\pi_n] \to I_c(\mu, \nu)$ and denote $\eta_n = (\pi_n)_1$. By compactness, one can assume that π_n converges to some probability measure π on $\mathcal{X} \times \mathcal{Y}$ with marginals η and ν. If $\eta \ll \mu$, then since I_c is lsc, it holds

$$ I_c[\pi] \leq \liminf_{n \to \infty} I_c[\pi_n] = I_c(\mu, \nu). $$

So, there is attainment.

Let us show that $\eta \ll \mu$. Using (B'), one sees that

$$ \sup_{n \in \mathbb{N}} \int \phi \left(\frac{d\eta_n}{d\mu} (x) \right) d\mu(x) < +\infty. $$

Therefore, by Dunford-Pettis theorem, the sequence $(\frac{d\eta_n}{d\mu}(x))_n$ admits a converging subsequence for the topology $\sigma(L_1(\mu), L_\infty(\mu))$. So $\eta \ll \mu$.

There is not always primal attainment

Suppose that μ is the uniform measure on $\mathcal{X} = [0, 1]$ and ν is an arbitrary probability measure on $\mathcal{Y} = [2, 3]$ and define

$$c(x, m) = \int |x - y|^2 m(dy), \quad x \in [0, 1], \quad m \in \mathcal{M}(\mathcal{Y}).$$

Then,

$$\mathcal{I}_c(\mu, \nu) = \inf_{\mu q = \nu} \int \int |y - x|^2 \mu(dx) q^x(dy) = \inf_{\eta \ll \mu} W^2_2(\eta, \nu) = W^2_2(\delta_1, \nu).$$

This lower bound is not reached.
There is not always primal attainment

Suppose that μ is the uniform measure on $\mathcal{X} = [0, 1]$ and ν is an arbitrary probability measure on $\mathcal{Y} = [2, 3]$ and define

$$c(x, m) = \int |x - y|^2 \, m(dy), \quad x \in [0, 1], \quad m \in \mathcal{M}(\mathcal{Y}).$$

Then,

$$\mathcal{I}_c(\mu, \nu) = \inf_{\mu q = \nu} \int \int |y - x|^2 \mu(dx) q^x(dy) = \inf_{\eta \ll \mu} W_2^2(\eta, \nu) = W_2^2(\delta_1, \nu).$$

This lower bound is not reached.

This motivates the following

Definition

A coupling π with second marginal ν is called a weak solution for $\mathcal{I}_c(\mu, \nu)$ if there is a sequence $\pi_n \in \Pi(\ll \mu, \nu)$ such that $I_c[\pi_n] \to \mathcal{I}_c(\mu, \nu)$ and $\pi_n \to \pi$.

Proposition

Weak solutions always exist. Under Assumption (B), any weak solution is a (strong) solution.
Technical Issue: Condition (B) is not meaningful in an economic context . . .

Let $o(x, q)$ be the output when a firm x hire a worker with skills profile q. Relation:

$$c(x, q) = -o(x, q).$$

Natural condition: $o(x, q) \geq 0$ and concave in q. So

$$c'_\infty(x, q) \leq 0$$

and (B) is never satisfied . . .
Attainment and duality under weaker conditions

Theorem (CGK, 2023)

Suppose that $c : \mathcal{X} \times \mathcal{M}(\mathcal{Y}) \to \mathbb{R}$ satisfies assumption (A) and is such that

\[
\begin{cases}
- \text{ for all } m \in \mathcal{M}(\mathcal{Y}), \text{ the functions } c(\cdot, m) \text{ and } c'_\infty(\cdot, m) \text{ are continuous on } \mathcal{X}, \\
\text{ and } \\
- \text{ there exists } a \geq 0 \text{ such that } c'_\infty(x, p) \leq a \text{ for all } x \in \mathcal{X} \text{ and } p \in \mathcal{P}(\mathcal{Y}).
\end{cases}
\]

(C)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$.

A coupling π^* with second marginal ν is a weak solution for $I_c(\mu, \nu)$ if and only if it minimizes the l.s.c functional

\[
\tilde{I}_c[\pi] = \int c(x, \frac{d\pi^*_1}{d\mu}(x)\pi_x) \, d\mu(x) + \int c'_\infty(x, \pi_x) \, d\pi^*_1(x)
\]

among couplings with second marginal ν.

Moreover, the following Kantorovich type dual formula holds

\[
I_c(\mu, \nu) = \sup_{f \in \mathcal{C}_b(\mathcal{Y})} \left\{ \int K_c f \, d\mu - \int f \, d\nu \right\}, \quad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})
\]

with

\[
K_c f(x) = \inf_{m \in \mathcal{M}(\mathcal{Y})} \left\{ \int f \, dm + c(x, m) \right\}, \quad x \in \mathcal{X}.
\]
III - The particular case of barycentric and conical costs
Duality for barycentric transport costs (WOT)

Here \(\mathcal{X} = \mathcal{Y} = \mathbb{R}^n \).

Theorem (G.-Roberto-Samson-Tetali, 2017)

Let \(\mu, \nu \in \mathcal{P}(\mathbb{R}^n) \) with finite first moments. Let \(\theta : \mathbb{R}^n \to \mathbb{R} \) be a convex function and consider

\[
\mathcal{T}_\theta(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \theta \left(x - \int y \ p_x(dy) \right) \mu(dx)
\]

Then,

\[
\mathcal{T}_\theta(\mu, \nu) = \sup_{\varphi} \left\{ \int Q_{\theta} \varphi \ d\mu - \int \varphi \ d\nu \right\},
\]

where the supremum runs over the set of all convex functions bounded from below and

\[
Q_{\theta} \varphi(x) = \inf_{y \in \mathbb{R}^n} \{ \varphi(y) + \theta(x - y) \}, \quad x \in \mathbb{R}^n.
\]

These barycentric cost functions found several applications, in particular for obtaining dimension free concentration inequalities for convex functions. Also involved in a proof of the Caffarelli contraction theorem.
A proof of Strassen theorem using barycentric L_1 cost

Notation: $\mathcal{P}_1(\mathbb{R}^n)$ the set of probability measures with a finite first moment.

Definition

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^n)$; μ is dominated by ν in the convex order, denoted by $\mu \leq_c \nu$, if

$$\int f \, d\mu \leq \int f \, d\nu, \quad \text{for all convex function } f : \mathbb{R}^n \to \mathbb{R}.$$

Theorem (Strassen (1965))

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^n)$; the following propositions are equivalent

1. $\mu \leq_c \nu$,
2. there exists a martingale (X_0, X_1) such that $X_0 \sim \mu$ and $X_1 \sim \nu$.

The implication $(2) \Rightarrow (1)$ comes from Jensen inequality.
A proof of Strassen theorem using barycentric L_1 cost

Let $\| \cdot \|$ be some norm on \mathbb{R}^n; consider

$$\overline{T}_1(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \left\| x - \int y p_x(dy) \right\| \mu(dx)$$
A proof of Strassen theorem using barycentric L_1 cost

Let $\| \cdot \|$ be some norm on \mathbb{R}^n; consider

$$\overline{T}_1(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \| x - \int y \, p_x(dy) \| \, \mu(dx)$$

$$= \inf_{(X_0, X_1), X_0 \sim \mu, X_1 \sim \nu} \mathbb{E} [\| X_0 - \mathbb{E}[X_1 | X_0] \|].$$
A proof of Strassen theorem using barycentric L_1 cost

Let $\| \cdot \|$ be some norm on \mathbb{R}^n; consider

$$\overline{T}_1(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \| x - \int y \, p_x(dy) \| \, \mu(dx)$$

$$= \inf_{(X_0, X_1), X_0 \sim \mu, X_1 \sim \nu} \mathbb{E} [\| X_0 - \mathbb{E}[X_1 | X_0] \|].$$

Therefore, $\overline{T}_1(\mu, \nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0, 1\}}$ with marginals μ and ν.
A proof of Strassen theorem using barycentric L_1 cost

Let $\| \cdot \|$ be some norm on \mathbb{R}^n; consider

$$
\overline{T}_1(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \left\| x - \int y p_x(dy) \right\| \mu(dx)
= \inf_{(X_0, X_1), X_0 \sim \mu, X_1 \sim \nu} \mathbb{E} \left[\| X_0 - \mathbb{E}[X_1|X_0] \| \right].
$$

Therefore, $\overline{T}_1(\mu, \nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0,1\}}$ with marginals μ and ν.

For the cost \overline{T}_1 the duality specializes to

$$
\overline{T}_1(\mu, \nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\},
$$

where the supremum runs over the set of all 1-Lipschitz and convex functions.
A proof of Strassen theorem using barycentric L_1 cost

Let $\| \cdot \|$ be some norm on \mathbb{R}^n; consider

$$
\overline{T}_1(\mu, \nu) = \inf_{p \in \mathcal{P}(\mu, \nu)} \int \left\| x - \int y p_x(dy) \right\| \mu(dx)
$$

$$
= \inf_{(X_0, X_1), X_0 \sim \mu, X_1 \sim \nu} \mathbb{E} \left[\| X_0 - \mathbb{E}[X_1|X_0]\| \right].
$$

Therefore, $\overline{T}_1(\mu, \nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0, 1\}}$ with marginals μ and ν.

For the cost \overline{T}_1 the duality specializes to

$$
\overline{T}_1(\mu, \nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\},
$$

where the supremum runs over the set of all 1-Lipschitz and convex functions.

Thus, if $\mu \leq c \nu$, then

$$
\overline{T}_1(\mu, \nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\} = 0
$$

and so there exists a martingale (X_0, X_1) with marginals μ and ν.
Duality for conical cost functions (WOTUK)

Here \mathcal{X} is a compact metric space, \mathcal{Y} is a compact subset of \mathbb{R}^n and \mathcal{Z} is the conical convex hull of \mathcal{Y}. Consider a cost function of the form

$$c(x, m) = F \left(x, \int y \, dm(y) \right), \quad x \in \mathcal{X}, \quad m \in \mathcal{M}(\mathcal{Y}),$$

with $F : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$.

Theorem (CGK, 2023)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and assume that c satisfies Assumption (A). If c also satisfies assumption (C) or if the convex hull of \mathcal{Y} does not contain 0, then for any probability measure $\nu \in \mathcal{P}(\mathcal{Y})$, it holds

$$\mathcal{I}_c(\mu, \nu) = \sup_{\varphi \in \Phi(\mathcal{Z}) \cap L^1(\nu)} \left\{ \int Q_{F\varphi}(x) \mu(dx) - \int \varphi(y) \nu(dy) \right\},$$

where $\Phi(\mathcal{Z})$ is the set of all lower semicontinuous, convex positively 1-homogenous functions $\varphi : \mathcal{Z} \to \mathbb{R} \cup \{+\infty\}$ and where

$$Q_{F\varphi}(x) = \inf_{z \in \mathcal{Z}} \{ \varphi(z) + F(x, z) \}, \quad x \in \mathcal{X}.$$
Under the assumptions of the preceding theorem, and assuming that $F(x, z) = -G(x, z)$ with $G(x, z) \geq 0$ and concave in z, then

$$-I_c(\mu, \nu) = \inf_{\varphi \in \Phi^+ (\mathcal{Z}) \cap L^1(\nu)} \left\{ \int \sup_{z \in \mathcal{Z}} \{ G(x, z) - \varphi(z) \} \mu(dx) + \int \varphi(y) \nu(dy) \right\},$$

where $\Phi^+ (\mathcal{Z})$ is the set of all lower semicontinuous, convex positively 1-homogenous functions $\varphi : \mathcal{Z} \to \mathbb{R}^+ \cup \{+\infty\}$.

Functions $\varphi \in \Phi^+ (\mathcal{Z})$ are interpreted as wages.

For a given wage φ,

$$\sup_{z \in \mathcal{Z}} \{ G(x, z) - \varphi(z) \}$$

is the maximal output net of wage a firm of type x can obtain.
A variant of Strassen Theorem

Definition

If \(\mu, \nu \) are two probability measures with a finite moment of order 1, we will say that \(\mu \) is dominated by \(\nu \) for the positively 1-homogenous convex order if for all \(\varphi : \mathbb{R}^d \rightarrow \mathbb{R} \) convex and positively 1-homogenous, one has \(\int \varphi \, d\mu \leq \int \varphi \, d\nu \).

We will use the notation \(\mu \leq_{phc} \nu \) to denote this order.

Theorem (CGK, 2023)

Let \(\mu, \nu \) be two compactly supported probability measures on \(\mathbb{R}^d \). Then the following are equivalent:

(i) \(\mu \leq_{phc} \nu \),

(ii) There exists a nonnegative kernel \(q \) such that \(\mu q = \nu \) and

\[
\int y \, q^x(dy) = x
\]

for \(\mu \) almost every \(x \).
Structure of solutions for conical costs

Theorem (CGK, 2023)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ be such that $\mathcal{I}_c(\mu, \nu) < +\infty$, and assume that the convex hull of the support of ν does not contain 0. Then, the following identity holds

$$\mathcal{I}_c(\mu, \nu) = \inf_{\gamma \leq \text{phc} \nu} \mathcal{T}_F(\mu, \gamma),$$

(1)

where and \mathcal{T}_F denotes the classical transport cost associated to the cost function F:

$$\mathcal{T}_F(\mu, \gamma) = \inf_{\pi \in \Pi(\mu, \gamma)} \int \int F(x, z) \pi(dx, dz), \quad \forall \mu \in \mathcal{P}(\mathcal{X}), \forall \gamma \in \mathcal{P}(\mathcal{Z}).$$

Moreover, suppose that $\bar{q} \in Q(\mu, \nu)$ is a solution for $\mathcal{I}_c(\mu, \nu)$, consider the map \bar{S} defined by

$$\bar{S}(x) = \int y \bar{q}^x(dy), \quad x \in \mathcal{X},$$

and denote by $\bar{\nu}$ the image of μ under the map \bar{S}. Then the following holds:

- the probability measure $\bar{\nu}$ is dominated by ν in the positively 1-homogenous convex order,
- one has that

$$\mathcal{I}_c(\mu, \nu) = \int F(x, \bar{S}(x)) \mu(dx) = \inf_{\gamma \leq \text{phc} \nu} \mathcal{T}_F(\mu, \gamma)$$
IV - Perspectives
Some open questions

- Understand better cyclical monotonicity.
- When is the matching deterministic?
- What is the characterization of stochastic orders associated to convex positively homogeneous functions of degree k? Is there a general version of Strassen theorem applying for such classes of functions?
- Are there applications of transport cost I_c in functional/concentration inequalities?
Thank you for your attention!