Weak Optimal Transport with Unnormalized Kernels

Nathaël Gozlan

Université Paris Cité New Monge Problems and Applications 14 september 2023

Nathaël Gozlan

Outline

Work in collaboration with P. Choné and F. Kramarz

- I Weak Optimal Transport with (un)-normalized kernels : motivations and examples
- II General results : primal attainment, duality
- III The particular case of barycentric and conical costs
- **IV** Perspectives

-

A 10

I - Weak Optimal Transport with (un)-normalized kernels : motivations and examples

Optimal Transport - classical definition

Let \mathcal{X}, \mathcal{Y} be Polish spaces and $\omega : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ a measurable function.

Definition

The optimal transport cost between two probability measures μ and ν is given by

$$T_{\omega}(\nu,\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \omega(x,y) d\pi(x,y),$$

where $\Pi(\mu, \nu)$ denotes the set of probability measures π on $\mathcal{X} \times \mathcal{Y}$ having μ and ν as marginals (called 'transport plans between μ and ν ').

Equivalently

$$T_{\omega}(\nu,\mu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[\omega(X,Y)]$$

Classical Examples : Kantorovich distances of order $p \ge 1$

$$W^p_p(\nu,\mu) = \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[d^p(X,Y)]$$

(if $\mathcal{X} = \mathcal{Y}$ and d metrizes \mathcal{X}).

.

Weak Optimal Transport

G.-Roberto-Samson-Tetali (2017), Alibert-Bouchitté-Champion (2018)

Let $\pi \in \Pi(\mu, \nu)$ be a transport plan between μ and ν written in disintegrated form

$$d\pi(x,y)=d\mu(x)dp_x(y),$$

with $x \mapsto p_x$ a transition kernel (μ a.s unique).

Interpretation :The kernel p_x tells where the mass coming from x is allocated over \mathcal{Y} . If $\omega : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$ is a cost function then

$$\iint \omega(x,y) \, d\pi(x,y) = \int \left(\int \omega(x,y) \, dp_x(y) \right) \, d\mu(x).$$

In other words, transports of mass coming from x are penalized through their mean cost : $\int \omega(x, y) dp_x(y)$.

Idea of WOT :introduce more general penalizations.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Weak Optimal Transport (WOT)

Let $\mathcal{P}(\mathcal{Y})$ denote the set of all probability measures on \mathcal{Y} .

Definition

Let $c: \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R}^+ \cup \{+\infty\}$; the weak optimal transport cost $\mathcal{T}_c(\mu, \nu)$ is defined by

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{p\in\mathcal{P}(\mu,\nu)}\int c(x,p_{x})\,d\mu(x),$$

where $\mathcal{P}(\mu, \nu)$ is the set of all probability kernels p such that $\mu p = \nu$.

Classical transport :

$$c(x,p) = \int \omega(x,y) \, dp(y).$$

In all useful examples, the function c is convex in p.

Comments

- First examples go back to the works of K. Marton (1996) on concentration of measure.
- Further developments by Samson (2000, 2007) : concentration for Markov chains or suprema of empirical processes.
- The framework of weak transport contains many variants of the transport problem : Schrödinger transport problem, martingale transport problem, semi-martingale transport problem,...
- General tools (duality, cyclical monotonicity) have been developed to study weak transport problems. See Backhoff-Veraguas, Beiglböck, Pammer (2019).
- Other specific applications : concentration for convex functions (GRST 2017), discrete curvature bounds (GRST 2014, Samson 2022, 2023), model-independent pricing problem (Acciaio-Beiglboeck-Pammer 2021)

Nice survey paper by Backhoff-Veraguas and Pammer (2020).

(日本)(周本)(日本)(日本)

Examples

(1) Barycentric transport : $\mathcal{X} = \mathcal{Y} = \mathbb{R}^n$ and

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right),$$

where $\theta : \mathbb{R}^n \to \mathbb{R}^+$ (convex). We will denote by $\overline{\mathcal{T}}_{\theta}(\mu, \nu)$ the corresponding weak optimal transport cost.

(2) Transport with martingale constraints : $\mathcal{X} = \mathcal{Y} = \mathbb{R}^n$ and

$$c(x,p) = \begin{cases} \int \omega(x,y) \, dp(y) & \text{if } \int y \, dp(y) = x \\ +\infty & \text{otherwise} \end{cases}$$

Beiglboeck-Juillet (2016)

3

(日本)(周本)(日本)(日本)

Examples

(3) Entropic regularized transport / Schrödinger bridges : Let *R* be a reference probability measure on $X \times X$

$$\mathcal{T}_{H}(\mu,
u) = \inf_{\pi \in \Pi(\mu,
u)} H(\pi | R),$$

where H is the relative entropy defined by

$$H(\pi|R) = \int \log \frac{d\pi}{dR} \, d\pi$$

if $\pi \ll R$ (and $+\infty$ otherwise).

Writing $d\pi(x, y) = d\mu(x)dp_x(y)$ and $dR(x, y) = dm(x)dr_x(y)$, one gets

$$H(\pi|R) = H(\mu|m) + \int H(p_x|r_x) \, d\mu(x) := H(\mu|m) + \int c(x, p_x) \, d\mu(x)$$

'Zero noise limit' : Mikami, Thieullen, Léonard, Carlier-Duval-Peyré,...
 Applications : Cutturi, Peyré,...
 Functional inequalities : Gentil-Léonard-Ripani, Gigli-Tamanini, Fathi-G.-Prod'homme,...
 (4) ...

(日本)(周本)(日本)(日本)

From WOT to WOTUK : a toy example

A zoo contains several groups of animals. Each week, a certain amount of feed is received by the zoo. What is the best way to feed the animals?

A first modelization attempt with WOT

- $\mathcal X$ is the finite set of all animals of the zoo
- ${\mathcal Y}$ is the set of types of feed received by the zoo
- $\mu = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \delta_x$ is the distribution of animals
- $\nu \in \mathcal{P}(\mathcal{Y})$ is the distribution of feeds received by the zoo
- For $x \in \mathcal{X}$ and $p \in \mathcal{P}(\mathcal{Y})$,

c(x, p)

is some quantity reflecting the health of animal x when it is fed with the distribution of feeds p. By convention, we want to minimize this quantity.

A coupling

$$d\pi(x,y) = d\mu(x)dp_x(y) \in \Pi(\mu,\nu)$$

gives a way to allocate the feed among animals. Here p_x represents the feed received by the animal x. The equation

 $\nu = \mu p$

means that all the feed has been distributed.

The best allocation is obtained by solving

$$\mathcal{T}_{c}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} c(x,p_{x}).$$

A first modelization attempt with WOT

Criticism :

- in this model, each animal x receives a fixed portion $1/|\mathcal{X}|$ of the total amount of feed.
- c(x, p) does not depend on the quantity of feed received by animal x but only on the composition of its meal.

 \rightsquigarrow We need to relax the WOT framework, in such a way that the quantity of food received by each animal becomes a new optimization parameter.

WOT with Unnormalized Kernels (WOTUK)

Denote by $\mathcal{M}(\mathcal{Y})$ the set of all non-negative finite measures on \mathcal{Y} .

Definition

Let $c: \mathcal{X} \times \mathcal{M}(\mathcal{Y}) \to \mathbb{R} \cup \{+\infty\}$; the unnormalized weak transport cost $\mathcal{I}_c(\mu, \nu)$ between $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ is defined by

$$\mathcal{I}_{c}(\mu,\nu) = \inf_{q \in \mathcal{Q}(\mu,\nu)} \int c(x,q^{x}) d\mu(x),$$

where $\mathcal{Q}(\mu, \nu)$ is the set of all non-negative kernels q (i.e $q^{x}(dy) \in \mathcal{M}(\mathcal{Y})$ for all $x \in \mathcal{X}$) such that $\mu q = \nu$.

If $q \in \mathcal{Q}(\mu, \nu)$, then for all $x \in \mathcal{X}$,

$$q_x(dy) = N(x)p_x(dy)$$

with $\int N(x) \mu(dx) = 1$ and p a probability kernel transporting $\eta = N\mu$ onto ν .

Interpretation : N(x) represents the quantity of feed received by animal x and p_x is the composition of its meal.

Remark

We deal with measures of probability only by convenience. The definition above also makes sense for positive measures μ, ν with possibly different masses.

13/36

Nathaël Gozlan	WOTUK	New Monge Problems and App.

Equivalent formulation

Let

 $\Pi(\ll \mu,\nu)$

be the set of all probability measures π on $\mathcal{X} \times \mathcal{Y}$ such that π_1 is absolutely continuous w.r.t μ . For any $\pi \in \Pi(\ll \mu, \nu)$, let

$$I_c[\pi] = \int c\left(x, \frac{d\pi_1}{d\mu}(x)\pi_x\right) d\mu(x)$$

where $d\pi(x, y) = d\pi_1(x)d\pi_x(y)$.

Then, it holds

$$\mathcal{I}_{c}(\mu,\nu) = \inf_{\pi \in \Pi(\ll \mu,\nu)} I_{c}[\pi].$$

Indeed,

$$\begin{split} \mathcal{I}_{c}(\mu,\nu) &= \inf_{\eta \ll \mu} \inf_{p \in \mathcal{P}(\eta,\nu)} \int c\left(x,\frac{d\eta}{d\mu}(x)p_{x}\right) d\mu(x) \\ &= \inf_{\eta \ll \mu} \inf_{\pi \in \Pi(\eta,\nu)} \int c\left(x,\frac{d\pi_{1}}{d\mu}(x)\pi_{x}\right) d\mu(x) \\ &= \inf_{\pi \in \Pi(\ll,\mu,\nu)} I_{c}[\pi]. \end{split}$$

э

Economic motivation (Choné - Kramarz 2021)

э

Economic motivation (Choné - Kramarz 2021)

- \mathcal{X} is the space of firms types
- ${\mathcal Y}$ is the space of workers skill's profiles
- μ is the distribution of firms in a given economy (the sizes of the firms are unknown)
- ν is the distribution of workers in a given economy
- q^{x} represents the workers recruited by firm x. For instance $q^{x}(dy) = \sum_{i=1}^{k} n_{i} \delta_{y_{i}}$ means that firm x has recruited n_{i} workers with the skill profile y_{i} . Here the size of firm x is $N(x) = \sum_{i=1}^{k} n_{i}$.
- -c(x, m) represents the output of firm x when it recruits a distribution of workers m.

Goal : Find the optimal allocation of workers to optimize the total output in the economy.

II - General results : primal attainment, duality

э

Primal attainment and duality for WOT

Theorem (Backhoff-Veraguas - Beiglboeck - Pammer (2018))

If $c : \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \to \mathbb{R} \cup \{+\infty\}$ is jointly lower semi-continuous, lower bounded and convex in p, then for all $\mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})$, there exists $p \in \mathcal{P}(\mu, \nu)$ such that

$$\mathcal{T}_{c}(\mu,\nu)=\int c(x,p_{x})\,d\mu(x).$$

Moreover, the following Kantorovich type dual formula holds

$$\mathcal{T}_{c}(\mu,\nu) = \sup_{f \in \mathcal{C}_{b}(\mathcal{Y})} \left\{ \int R_{c}f \, d\mu - \int f \, d\nu \right\}, \qquad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})$$

with

$$R_c f(x) = \inf_{p \in \mathcal{P}(\mathcal{Y})} \left\{ \int f \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Improves G.-Roberto-Samson-Tetali (2017) and Alibert-Bouchitté-Champion (2018). Links with backward linear mass transfers Bowles-Ghoussoub (2019).

Duality holds under more general conditions on the cost function : μ, ν have finite k-th moment and c is lower semicontinuous w.r.t W_k topology, $k \ge 1$.

イロト イボト イヨト イヨト

Primal attainment and duality for WOTUK

 ${\mathcal X}$ and ${\mathcal Y}$ will always be assumed to be compact.

Usual Assumptions :

(A) c can be written as

$$c(x,m) = \sup_{k\in\mathbb{N}}\left\{\int a_k(x,y)\,dm(y) + b_k(x)\right\}, \qquad x\in\mathcal{X}, \qquad \forall m\in\mathcal{M}(\mathcal{Y}),$$

where, for all $k \in \mathbb{N}$, $a_k : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and $b_k : \mathcal{X} \to \mathbb{R}$ are continuous functions.

(B) for all $x \in \mathcal{X}$ and $m \in \mathcal{M}(\mathcal{Y}) \setminus \{0\}$,

$$c'_{\infty}(x,m):=\lim_{\lambda\to\infty}rac{c(x,\lambda m)}{\lambda}=+\infty.$$

Remark

(A) implies in particular that c is lower bounded, convex w.r.t its second variable and jointly l.s.c. Is there equivalence?

		<u> </u>	
NISt	b b c c	-07	
			-

Primal attainment and duality for WOTUK

Theorem (CGK, 2023))

If $c : \mathcal{X} \times \mathcal{M}(\mathcal{Y}) \to \mathbb{R} \cup \{+\infty\}$ satisfies Assumptions (A) and (B), then for all $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$, there exists $q \in \mathcal{Q}(\mu, \nu)$ such that

$$\mathcal{I}_c(\mu,\nu) = \int c(x,q_x) \, d\mu(x).$$

Moreover, the following Kantorovich type dual formula holds

$$\mathcal{I}_{c}(\mu,\nu) = \sup_{f \in \mathcal{C}_{b}(\mathcal{Y})} \left\{ \int K_{c}f \, d\mu - \int f \, d\nu \right\}, \qquad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})$$

with

$$K_c f(x) = \inf_{m \in \mathcal{M}(\mathcal{Y})} \left\{ \int f \, dm + c(x,m) \right\}, \qquad x \in \mathcal{X}.$$

Mat	haöl	Corl	20
INAL	naei	002	an

Sketch of proof for primal attainment

As observed earlier,

$$\mathcal{I}_{c}(\mu,\nu) = \inf_{\pi \in \Pi(\ll \mu,\nu)} I_{c}[\pi],$$

where

 $\Pi(\ll \mu,\nu)$

is the set of probability measures on $\mathcal{X} imes \mathcal{Y}$ such that π_1 is absolutely continuous w.r.t μ and

$$I_c[\pi] = \int c\left(x, \frac{d\pi_1}{d\mu}(x)\pi_x\right) \, d\mu(x)$$

with $d\pi(x, y) = d\pi_1(x)d\pi_x(y)$.

Using Assumption (A), one can show that I_c is lower semicontinuous on $\Pi(\ll \mu, \nu)$.

э

Sketch of proof for primal attainment

For simplicity, suppose that there exists a convex function $\phi: \mathbb{R}_+ \to \mathbb{R}$ such that $\phi(x)/x \to +\infty$ and

$$(B') \qquad c(x,m) \geq \phi(m(\mathcal{Y})), \qquad \forall x \in \mathcal{X}, \forall m \in \mathcal{M}(\mathcal{Y}).$$

Then Assumption (B) holds.

Take π_n a sequence such that $I_c[\pi_n] \to \mathcal{I}_c(\mu, \nu)$ and denote $\eta_n = (\pi_n)_1$. By compactness, one can assume that π_n converges to some probability measure π on $\mathcal{X} \times \mathcal{Y}$ with marginals η and ν . If $\eta \ll \mu$, then since I_c is lsc, it holds

$$I_c[\pi] \leq \liminf_{n \to \infty} I_c[\pi_n] = \mathcal{I}_c(\mu, \nu).$$

So, there is attainment.

Let us show that $\eta \ll \mu$. Using (B'), one sees that

$$\sup_{n\in\mathbb{N}}\int\phi\left(\frac{d\eta_n}{d\mu}(x)\right)\,d\mu(x)<+\infty.$$

Therefore, by Dunford-Pettis theorem, the sequence $(\frac{d\eta_n}{d\mu}(x))_n$ admits a converging subsequence for the topology $\sigma(L_1(\mu), L_{\infty}(\mu))$. So $\eta \ll \mu$.

イロト イボト イラト イラト 一戸

There is not always primal attainment

Suppose that μ is the uniform measure on $\mathcal{X} = [0,1]$ and ν is an arbitrary probability measure on $\mathcal{Y} = [2,3]$ and define

$$c(x,m) = \int |x-y|^2 m(dy), \quad x \in [0,1], \qquad m \in \mathcal{M}(\mathcal{Y}).$$

Then,

$$\mathcal{I}_c(\mu,\nu) = \inf_{\mu q = \nu} \iint |y-x|^2 \mu(dx) q^x(dy) = \inf_{\eta \ll \mu} W_2^2(\eta,\nu) = W_2^2(\delta_1,\nu).$$

This lower bound is not reached

< A >

- 3

There is not always primal attainment

Suppose that μ is the uniform measure on $\mathcal{X} = [0, 1]$ and ν is an arbitrary probability measure on $\mathcal{Y} = [2, 3]$ and define

$$c(x,m) = \int |x-y|^2 m(dy), \quad x \in [0,1], \qquad m \in \mathcal{M}(\mathcal{Y}).$$

Then,

$$\mathcal{I}_c(\mu,\nu) = \inf_{\mu q = \nu} \iint |y - x|^2 \mu(dx) q^x(dy) = \inf_{\eta \ll \mu} W_2^2(\eta,\nu) = W_2^2(\delta_1,\nu).$$

This lower bound is not reached.

This motivates the following

Definition

A coupling π with second marginal ν is called a weak solution for $\mathcal{I}_c(\mu, \nu)$ if there is a sequence $\pi_n \in \Pi(\ll \mu, \nu)$ such that $I_c[\pi_n] \to \mathcal{I}_c(\mu, \nu)$ and $\pi_n \to \pi$.

Proposition

Weak solutions always exist. Under Assumption (B), any weak solution is a (strong) solution.

-

Technical Issue : Condition (B) is not meaningful in an economic context ...

Let o(x, q) be the output when a firm x hire a worker with skills profile q. Relation :

$$c(x,q)=-o(x,q).$$

Natural condition : $o(x, q) \ge 0$ and concave in q. So

 $c'_{\infty}(x,q) \leq 0$

and (B) is never satisfied

- 34

イロト イヨト イヨト

Attainment and duality under weaker conditions

Theorem (CGK, 2023)

Suppose that $c:\mathcal{X}\times\mathcal{M}(\mathcal{Y})\to\mathbb{R}$ satisfies assumption (A) and is such that

 $\begin{cases} - \text{ for all } m \in \mathcal{M}(\mathcal{Y}), \text{ the functions } c(\,\cdot\,,m) \text{ and } c'_{\infty}(\,\cdot\,,m) \text{ are continuous on } \mathcal{X}, \\ \text{and} \end{cases}$

$$- \ \text{there exists } a \geq 0 \ \text{such that } c'_\infty(x,p) \leq a \ \text{for all } x \in \mathcal{X} \ \text{and} \ p \in \mathcal{P}(\mathcal{Y})$$

Let
$$\mu \in \mathcal{P}(\mathcal{X})$$
 and $\nu \in \mathcal{P}(\mathcal{Y})$.

A coupling π^* with second marginal ν is a weak solution for $\mathcal{I}_c(\mu, \nu)$ if and only if it minimizes the l.s.c functional

$$\bar{l}_{c}[\pi] = \int c\left(x, \frac{d\pi_{1}^{ac}}{d\mu}(x)\pi_{x}\right) d\mu(x) + \int c_{\infty}'(x, \pi_{x}) d\pi_{1}^{s}(x)$$

among couplings with second marginal ν .

Moreover, the following Kantorovich type dual formula holds

$$\mathcal{I}_{c}(\mu,\nu) = \sup_{f \in \mathcal{C}_{b}(\mathcal{Y})} \left\{ \int K_{c}f \, d\mu - \int f \, d\nu \right\}, \qquad \mu \in \mathcal{P}(\mathcal{X}), \nu \in \mathcal{P}(\mathcal{Y})$$

with

$$K_c f(x) = \inf_{m \in \mathcal{M}(\mathcal{Y})} \left\{ \int f \, dm + c(x, m) \right\}, \qquad x \in \mathcal{X}.$$

(C)

III - The particular case of barycentric and conical costs

Duality for barycentric transport costs (WOT)

Here $\mathcal{X} = \mathcal{Y} = \mathbb{R}^n$.

Theorem (G.-Roberto-Samson-Tetali, 2017)

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$ with finite first moments. Let $\theta : \mathbb{R}^n \to \mathbb{R}$ be a convex function and consider

$$\overline{\mathcal{T}}_{\theta}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \theta \left(x - \int y \, p_x(dy) \right) \, \mu(dx)$$

Then,

$$\overline{\mathcal{T}}_{\theta}(\mu,\nu) = \sup_{\varphi} \left\{ \int Q_{\theta}\varphi \, d\mu - \int \varphi \, d\nu \right\},\,$$

where the supremum runs over the set of all convex functions bounded from below and

$$Q_{\theta}\varphi(x) = \inf_{y \in \mathbb{R}^n} \{\varphi(y) + \theta(x - y)\}, \qquad x \in \mathbb{R}^n.$$

These barycentric cost functions found several applications, in particular for obtaining dimension free concentration inequalities for convex functions. Also involved in a proof of the Caffarelli contraction theorem.

- A 同 ト A ヨ ト A ヨ ト

Notation : $\mathcal{P}_1(\mathbb{R}^n)$ the set of probability measures with a finite first moment.

Definition

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^n)$; μ is dominated by ν in the convex order, denoted by $\mu \leq_c \nu$, if

 $\int f \, d\mu \leq \int f \, d\nu, \qquad \text{for all convex function } f: \mathbb{R}^n \to \mathbb{R}.$

Theorem (Strassen (1965))

Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^n)$; the following propositions are equivalent

- (1) $\mu \leq_c \nu$,
- (2) there exists a martingale (X_0, X_1) such that $X_0 \sim \mu$ and $X_1 \sim \nu$.

The implication $(2) \Rightarrow (1)$ comes from Jensen inequality.

伺下 イヨト イヨト

Let $\|\cdot\|$ be some norm on \mathbb{R}^n ; consider

$$\overline{\mathcal{T}}_1(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \left\| x - \int y \, p_x(dy) \right\| \, \mu(dx)$$

- 3

Let $\|\cdot\|$ be some norm on \mathbb{R}^n ; consider

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \left\| x - \int y \, p_{x}(dy) \right\| \, \mu(dx)$$
$$= \inf_{(X_{0},X_{1}), X_{0} \sim \mu, X_{1} \sim \nu} \mathbb{E}\left[\left\| X_{0} - \mathbb{E}[X_{1}|X_{0}] \right\| \right].$$

- 3

Let $\|\cdot\|$ be some norm on \mathbb{R}^n ; consider

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \left\| x - \int y \, p_{x}(dy) \right\| \, \mu(dx)$$
$$= \inf_{(X_{0},X_{1}), X_{0} \sim \mu, X_{1} \sim \nu} \mathbb{E}\left[\| X_{0} - \mathbb{E}[X_{1}|X_{0}] \| \right].$$

Therefore, $\overline{\mathcal{T}}_1(\mu,\nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0,1\}}$ with marginals μ and ν .

- B

Let $\|\cdot\|$ be some norm on \mathbb{R}^n ; consider

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \left\| x - \int y \, p_{x}(dy) \right\| \, \mu(dx)$$
$$= \inf_{(X_{0},X_{1}), X_{0} \sim \mu, X_{1} \sim \nu} \mathbb{E}\left[\left\| X_{0} - \mathbb{E}[X_{1}|X_{0}] \right\| \right].$$

Therefore, $\overline{T}_1(\mu, \nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0,1\}}$ with marginals μ and ν .

For the cost $\overline{\mathcal{T}}_1$ the duality specializes to

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\},\,$$

where the supremum runs over the set of all 1-Lipschitz and convex functions.

- 3

Let $\|\cdot\|$ be some norm on \mathbb{R}^n ; consider

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \inf_{p \in \mathcal{P}(\mu,\nu)} \int \left\| x - \int y \, p_{x}(dy) \right\| \, \mu(dx)$$
$$= \inf_{(X_{0},X_{1}), X_{0} \sim \mu, X_{1} \sim \nu} \mathbb{E}\left[\| X_{0} - \mathbb{E}[X_{1}|X_{0}] \| \right].$$

Therefore, $\overline{T}_1(\mu, \nu) = 0$ if and only if there exists a martingale $(X_i)_{i \in \{0,1\}}$ with marginals μ and ν .

For the cost $\overline{\mathcal{T}}_1$ the duality specializes to

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\},\,$$

where the supremum runs over the set of all 1-Lipschitz and convex functions.

Thus, if $\mu \leq_c \nu$, then

$$\overline{\mathcal{T}}_{1}(\mu,\nu) = \sup_{\varphi} \left\{ \int \varphi \, d\mu - \int \varphi \, d\nu \right\} = 0$$

and so there exists a martingale (X_0, X_1) with marginals μ and ν .

- 3

Duality for conical cost functions (WOTUK)

Here \mathcal{X} is a compact metric space, \mathcal{Y} is a compact subset of \mathbb{R}^n and \mathcal{Z} is the conical convex hull of \mathcal{Y} . Consider a cost function of the form

$$c(x,m) = F\left(x, \int y \, dm(y)\right), \qquad x \in \mathcal{X}, \qquad m \in \mathcal{M}(\mathcal{Y}),$$

with $F: \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$.

Theorem (CGK, 2023)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and assume that *c* satisfies Assumption (*A*). If *c* also satisfies assumption (*C*) or if the convex hull of \mathcal{Y} does not contain 0, then for any probability measure $\nu \in \mathcal{P}(\mathcal{Y})$, it holds

$$\mathcal{I}_{c}(\mu,\nu) = \sup_{\varphi \in \Phi(\mathcal{Z}) \cap L^{1}(\nu)} \left\{ \int Q_{F}\varphi(x)\,\mu(dx) - \int \varphi(y)\,\nu(dy) \right\},$$

where $\Phi(\mathcal{Z})$ is the set of all lower semicontinuous, convex positively 1-homogenous functions $\varphi: \mathcal{Z} \to \mathbb{R} \cup \{+\infty\}$ and where

$$Q_F \varphi(x) = \inf_{z \in \mathcal{Z}} \{\varphi(z) + F(x, z)\}, \qquad x \in \mathcal{X}.$$

Moreover, there is dual attainment.

		C	
Nat	hael	GOZ	an

Interpretation in economy

Under the assumptions of the preceding theorem, and assumting that F(x,z) = -G(x,z) with $G(x,z) \ge 0$ and concave in z, then

$$-\mathcal{I}_{c}(\mu,\nu) = \inf_{\varphi \in \Phi^{+}(\mathcal{Z}) \cap L^{1}(\nu)} \left\{ \int \sup_{z \in \mathcal{Z}} \left\{ G(x,z) - \varphi(z) \right\} \mu(dx) + \int \varphi(y) \, \nu(dy) \right\},$$

where $\Phi^+(\mathcal{Z})$ is the set of all lower semicontinuous, convex positively 1-homogenous functions $\varphi: \mathcal{Z} \to \mathbb{R}^+ \cup \{+\infty\}.$

Functions $\varphi \in \Phi^+(\mathcal{Z})$ are interpreted as wages.

For a given wage φ ,

$$\sup_{z\in\mathcal{Z}}\{G(x,z)-\varphi(z)\}$$

is the maximal output net of wage a firm of type x can obtain.

A variant of Strassen Theorem

Definition

If μ, ν are two probability measures with a finite moment of order 1, we will say that μ is dominated by ν for the positively 1-homogenous convex order if for all $\varphi : \mathbb{R}^d \to \mathbb{R}$ convex and positively 1-homogenous, one has $\int \varphi \, d\mu \leq \int \varphi \, d\nu$.

We will use the notation $\mu \leq_{phc} \nu$ to denote this order.

Theorem (CGK, 2023)

Let μ,ν be two compactly supported probability measures on $\mathbb{R}^d.$ Then the following are equivalent :

- (i) $\mu \leq_{phc} \nu$,
- (ii) There exists a nonnegative kernel q such that $\mu q = \nu$ and

$$\int y \, q^{x}(dy) = x$$

for μ almost every x.

- A 同 ト A ヨ ト A ヨ ト

Structure of solutions for conical costs

Theorem (CGK, 2023)

Let $\mu \in \mathcal{P}(\mathcal{X})$ and $\nu \in \mathcal{P}(\mathcal{Y})$ be such that $\mathcal{I}_c(\mu, \nu) < +\infty$, and assume that the convex hull of the support of ν does not contain 0. Then, the following identity holds

$$\mathcal{I}_{c}(\mu,\nu) = \inf_{\gamma \leq \rho h c \nu} \mathcal{T}_{F}(\mu,\gamma), \tag{1}$$

where and \mathcal{T}_F denotes the classical transport cost associated to the cost function F :

$$\mathcal{T}_{F}(\mu,\gamma) = \inf_{\pi \in \Pi(\mu,\gamma)} \iint F(x,z) \, \pi(dxdz), \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \forall \gamma \in \mathcal{P}(\mathcal{Z})$$

Moreover, suppose that $\bar{q} \in \mathcal{Q}(\mu, \nu)$ is a solution for $\mathcal{I}_c(\mu, \nu)$, consider the map \bar{S} defined by

$$ar{S}(x) = \int y \, ar{q}^x(dy), \qquad x \in \mathcal{X},$$

and denote by $ar{
u}$ the image of μ under the map $ar{S}$. Then the following holds :

- the probability measure $ar{
 u}$ is dominated by u in the positively 1-homogenous convex order,
- one has that

$$\mathcal{I}_{c}(\mu,
u) = \int F(x, \overline{S}(x)) \, \mu(dx) = \inf_{\gamma \leq phc^{\nu}} \mathcal{T}_{F}(\mu, \gamma)$$

(4月) トイラト イラト

IV - Perspectives

æ

→ 御 → → 注 → → 注 →

Some open questions

- Understand better cyclical monotonicity.
- When is the matching deterministic?
- What is the characterization of stochastic orders associated to convex positively homogeneous functions of degree *k*? Is there a general version of Strassen theorem applying for such classes of functions?
- Are there applications of transport cost \mathcal{I}_c in functional/concentration inequalities?

Thank you for your attention !

э