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Filtering problem

Consider the evolution of two processes in discrete time:

Xt = gt(Xt−1, εt), X0 ∼ p0

Yt = ht(Xt, ηt),

with

hidden (signal) process X taking value in some Polish space E

observable process Y taking value in some Polish space F

(εt)t and (ηt)t sequences of globally independent random variables taking value in
some Polish space E′ and F′, respectively

gt : E × E′ → E and ht : E × F′ → F measurable functions

GOAL: given the observed process (Y), infer realization of the hidden one (X):

X̂t = E[Xt|Y0, ...,Yt] ∀t
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Filtering problem

A popular approach: Two-steps update.

Propagation (prediction according to previous estimate and model dymanics):

X̂−t = E[Xt|Y0, ...,Yt−1] = Eε̃t∼εt [gt(X̂t−1, ε̃t)]

Conditioning (update via Bayes rule given the observed process):

X̂t = E[Xt|Y0, ...,Yt−1,Yt] = function (X̂−t ,Yt)

Main idea of our approach: use the two-step update, performing perform step 2 with a

variational representation of Bayes’ rule via optimal transport
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Kalman filter: basic idea

Let (X,Y) ∼ N(µ,Σ) =⇒ ξ =
X−µ1
σ1

, γ =
Y−µ2
σ2
∼ N(0, 1) with correlation ρ =

σ12
σ1σ2

Then
ξ = ργ +

»
1 − ρ2γ′, with γ′ ∼ N(0, 1), independent of γ

That is
X = µ1 + ρ · σ1

Y − µ2

σ2
+ σ1

»
1 − ρ2γ′

X|Y ∼ N
Å
µ1 + ρ · σ1

Y − µ2

σ2
, σ1

»
1 − ρ2

ã
In particular,

E[X|Y] = µ1 + ρ · σ1
Y − µ2

σ2

4/17



Kalman filter

Consider the system:

Xt = atXt−1 + btεt,

Yt = AtXt + Btηt,

with εt, ηt independent standard normal

Then the two-steps update is given by:

X̂−t = atX̂t−1

X̂t = atX̂t−1 + Gt · (Yt − AtatX̂t−1)

with Gt =
AtCt

A2
t Ct+B2

t
and Ct = a2

t (1 −Gt−1At)Ct−1 + b2
t

(Explicit formulation of posterior distribution in a linear Gaussian setting)
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Conditional expectations as transports

Lemma
Let E, F be Polish spaces, X,Y non-atomic r.v.’s taking values in E, F, resp. Then:

(i) There exists a measurable map T : E × F → E s.t., for X̃ ∼ X, Ỹ ∼ Y, X̃ ⊥ Ỹ,(
T (X̃, Ỹ), Ỹ

) Law
= (X,Y).

This means that S : (x, y) 7→ (T (x, y), y) is a Monge map that transports the
independent coupling PX ⊗ PY into the joint distribution PXY :

S #(PX ⊗ PY ) = PXY .

(ii) For every map T as in (i),

P(T (X, y) ∈ ·) = P(X ∈ · |Y = y), dPY -almost all y ∈ F.
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Conditional expectations as transports (Hosseini and Taghvaei 2022)

Let E = F = Rd and S(PX ⊗ PY , PXY ) be set of maps S : (x, y) 7→ (T (x, y), y) as
above, and consider the transport problem over those maps:

min
S∈S(PX⊗PY ,PXY )

E(X,Y)∼PX⊗PY

[
‖T (X,Y) − X‖2

]
.

Its dual reads as
min

f∈CVXX
EPX⊗PY

[
f (X,Y)

]
+ EPXY

[
f ∗(X,Y)

]
,

where f ∈ CVXX iff x 7→ f (x, y) convex and in L1(PX) for any y, and where
f ∗(x, y) = supz z · x − f (z, y) is the convex conjugate of f (·, y).

Relation between the primal optimizer T̄ and any dual optimizer f̄ :

T̄ (., y) = ∇x f̄ (., y),

so that
PX|Y=y = ∇x f̄ (., y)#PX
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Example: Gaussian case

Recall the Gaussian example (X,Y) ∼ N(µ,Σ), where for simplicity µi = 0, σi = 1.
Then we have

X = ρY +
»

1 − ρ2γ′, γ′ ∼ N(0, 1) ⊥ Y

We can recover this by solving the OT problem above, that admits optimal
transport map

T̄ (x, y) = ρx +
»

1 − ρ2y

so that
PX|Y=y = T̄ (., y)#PX
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The general (non-linear non-Gaussian) case

We want to develop an analogous analysis for systems of the form:

Xt = gt(Xt−1, εt), X0 ∼ p0

Yt = ht(Xt, ηt)

I. Smoothing: at every t, re-estimate all X̂0, X̂1, ..., X̂t, given Y0, ...,Yt.

II. Non-smoothing: at every t, keep previous estimates X̂0, X̂1, ..., X̂t−1, and
estimate only X̂t using:
- previous estimates, together with
- new observation Yt
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Smoothing

Example
I. Smoothing: at every t, re-estimate all X̂0, X̂1, ..., X̂t, given Y0, ...,Yt.

Consider Tt : R2d(t+1)→ Rd(t+1) and S t : R2d(t+1)→ R2d(t+1), S t(x, y) = (Tt(x, y), y) s.t.
S t#(PX0:t ⊗ PY0:t ) = PX0:t ,Y0:t ,

so that Tt(X0:t; Y0:t) has the interpretation of X0:t|Y0:t

Consider the transport problem with cost ‖Tt(X0:t; Y0:t) − X0:t‖
2 over such maps S t

⇒ t + 1-dimensional version of the static setting seen above: solve dual problem and
get f̄ , and from it obtain, for any observation y0:t:

PX0:t |Y0:t=y0:t = ∇x f̄ (., y0:t)#PX0:t
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Smoothing - algorithm

At time t we face the dual problem:
min

f∈CVXX
EPX0:t⊗PY0:t

[
f (X,Y)

]
+ EPX0:t ,Y0:t

[
f ∗(X,Y)

]

Sample {Xi
0:t}i=1,..,N from prior PX0:t and from them generate Y i

0:t ∼ PY0:t |X0:t=Xi
0:t

so

that {(Xi
0:t,Y

i
0:t)}i=1,..,N is an independent sample from the joint distribution PX0:t ,Y0:t

Fix a subset F ⊂ CVXX of parameterized functions and define the empirical cost

VN( f ) = 1
N(N−1)

∑N
i, j=1 f (Xi

0:t,Y
j

0:t) + 1
N
∑N

i=1 f ∗(Xi
0:t,Y

i
0:t), ∀ f ∈ F

Minimize over F and use f̄ N,F∈ argmin
f∈F

VN( f ) to generate sample from posterior

given the realization y0:t:
X̃i

0:t = ∇x f̄ N,F (Xi
0:t, y0:t)

↑ ↑ ↑
posterior prior observation
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Non-smoothing

Example
II. Non-smoothing: at every t, keep previous estimates X̂0, X̂1, ..., X̂t−1, and

estimate X̂t using the previous estimates together with the new observation Yt

Idea: use the two-step iteration

X̂−t = Eε̃t∼εt [gt(X̂t−1, ε̃t)]

X̂t = function (X̂−t ,Yt)

learning the conditioning function as an optimal transport map, analogous to HT22

“Something like”

min
S t∈S(PXt⊗PYt ,PXt ,Yt )

E(Xt ,Yt)∼PXt⊗PYt

[
‖Tt(Xt; Yt) − Xt‖

2]
→ But some adjustment is needed since X̂−t and Yt are NOT independent
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Non-smoothing

We want to set X̂t = function (Eε̃t∼εt [gt(X̂t−1, ε̃t)],Yt) with independent arguments

⇒ condition on the previous estimate X̂t−1 = x̄

Let the map T̄ x̄
t be s.t. S t(x, y) = (T̄ x̄

t (x, y), y) is optimizer for

min
S t∈S

Ä
PXt |Xt−1=x̄⊗PYt |Xt−1=x̄,P(Xt ,Yt )|Xt−1=x̄

äE(Xt ,Yt)∼PXt |Xt−1=x̄⊗PYt |Xt−1=x̄

[
‖Tt(Xt; Yt) − Xt‖

2] ,
i.e. T̄ x̄

t (., y) = ∇x f̄ x̄
t (., y), with f̄ x̄

t dual optimizer

As updating step in our algorithm, we take

X̂t = ∇x f̄ x̄
t (Eε̃t∼εt [gt(x̄, ε̃t)],Yt)
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t be s.t. S t(x, y) = (T̄ x̄

t (x, y), y) is optimizer for

min
S t∈S

Ä
PXt |Xt−1=x̄⊗PYt |Xt−1=x̄,P(Xt ,Yt )|Xt−1=x̄

äE(Xt ,Yt)∼PXt |Xt−1=x̄⊗PYt |Xt−1=x̄

[
‖Tt(Xt; Yt) − Xt‖

2] ,
i.e. T̄ x̄

t (., y) = ∇x f̄ x̄
t (., y), with f̄ x̄

t dual optimizer

As updating step in our algorithm, we take

X̂t = ∇x f̄ x̄
t (Eε̃t∼εt [gt(x̄, ε̃t)],Yt)
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Example: Kalman filter

Recall the system

Xt = atXt−1 + btεt,

Yt = AtXt + Btηt,

with εt, ηt independent standard normal, where we have

X̂t = atX̂t−1 + Gt · (Yt − AtatX̂t−1)

We can recover this by solving the OT problems above, that admit optimal
transport map (same for every x̄)

T̄t(x; y) = x + Gt · (y − At x)
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Non-smoothing - algorithm

At time t, condition on the previous estimate X̂t−1 = x̄, we face the dual problem:

min
f∈CVXX

EPXt |Xt−1=x̄⊗PYt |Xt−1=x̄

[
f (X,Y)

]
+ EP(Xt ,Yt )|Xt−1=x̄

[
f ∗(X,Y)

]

Sample {ε̃i
t}i=1,..,N ∼ εt independent from everything else, to get the sample

Xi
t = gt(x̄, ε̃i

t) from the prior and from them generate Y i
t ∼ PYt |Xt=Xi

t
, so that

{(Xi
t ,Y

i
t )}i=1,..,N is an independent sample from the joint distribution P(Xt ,Yt)|Xt−1=x̄

Fix a subset F ⊂ CVXX of parameterized functions and define the empirical cost

VN( f ) = 1
N(N−1)

∑N
i, j=1 f (Xi

t ,Y
j

t ) + 1
N
∑N

i=1 f ∗(Xi
t ,Y

i
t ), ∀ f ∈ F

Minimize over F and use f̄ x̄,N,F∈ argmin
f∈F

VN( f ) to generate sample from posterior

given the realization yt:
X̃i

t = ∇x f̄ x̄,N,F (Xi
t , yt)
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Conclusions

We consider discrete-time dynamic systems of hidden and observable processes
(these can be defined on different spaces, have different dimension etc)

We consider smoothing and non-smoothing in filtering

We implement a variational representation of Bayes’ through optimal transport
theory, to learn transport maps that push independent coupling to joint
distribution, and so implicitly the map that sends prior to posterior (we are not only
learning X̂t = E[Xt|Y0, ...,Yt] but the whole posterior distribution PXt |Y0,...,Yt )

Once optimal transport maps are learned (by simulation and approximation of
dual problem), these can be used for any realization of the observable process
(without need to be computed again for different realizations)
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Still a lot to do and understand...

Reduce complexity by e.g. solving some conditional version of the transport
problem, or by using X̃i

t−1 rather than conditioning to X̂t−1 = x̄

Consider more general dynamics

Consider different costs in the OT problem, test and compare solutions

Study stability, error, ...

Introduce uncertainty (around dynamics of X or Y, or as adapted Wasserstein
balls around PX , PY or PXY )

Thank you for your attention!
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