Non-linear filtering via optimal transport

Beatrice Acciaio

ETH Zurich
ongoing work with T. Schmidt (U. Freiburg)

Conference on New Monge Problems and Applications
September 14-15 2023, University Gustave Eiffel

Filtering problem

Consider the evolution of two processes in discrete time:

$$
\begin{aligned}
X_{t} & =g_{t}\left(X_{t-1}, \varepsilon_{t}\right), \quad X_{0} \sim p_{0} \\
Y_{t} & =h_{t}\left(X_{t}, \eta_{t}\right),
\end{aligned}
$$

with

- hidden (signal) process X taking value in some Polish space E
- observable process Y taking value in some Polish space F
- $\left(\varepsilon_{t}\right)_{t}$ and $\left(\eta_{t}\right)_{t}$ sequences of globally independent random variables taking value in some Polish space E^{\prime} and F^{\prime}, respectively
- $g_{t}: E \times E^{\prime} \rightarrow E$ and $h_{t}: E \times F^{\prime} \rightarrow F$ measurable functions

Filtering problem

Consider the evolution of two processes in discrete time:

$$
\begin{aligned}
X_{t} & =g_{t}\left(X_{t-1}, \varepsilon_{t}\right), \quad X_{0} \sim p_{0} \\
Y_{t} & =h_{t}\left(X_{t}, \eta_{t}\right),
\end{aligned}
$$

with

- hidden (signal) process X taking value in some Polish space E
- observable process Y taking value in some Polish space F
- $\left(\varepsilon_{t}\right)_{t}$ and $\left(\eta_{t}\right)_{t}$ sequences of globally independent random variables taking value in some Polish space E^{\prime} and F^{\prime}, respectively
- $g_{t}: E \times E^{\prime} \rightarrow E$ and $h_{t}: E \times F^{\prime} \rightarrow F$ measurable functions

GOAL: given the observed process (Y), infer realization of the hidden one (X) :

$$
\hat{X}_{t}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t}\right] \quad \forall t
$$

Filtering problem

A popular approach: Two-steps update.

- Propagation (prediction according to previous estimate and model dymanics):

$$
\hat{X}_{t}^{-}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t-1}\right]=\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right]
$$

Filtering problem

A popular approach: Two-steps update.

- Propagation (prediction according to previous estimate and model dymanics):

$$
\hat{X}_{t}^{-}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t-1}\right]=\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right]
$$

- Conditioning (update via Bayes rule given the observed process):

$$
\hat{X}_{t}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t-1}, Y_{t}\right]=\operatorname{function}\left(\hat{X}_{t}^{-}, Y_{t}\right)
$$

Filtering problem

A popular approach: Two-steps update.

- Propagation (prediction according to previous estimate and model dymanics):

$$
\hat{X}_{t}^{-}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t-1}\right]=\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right]
$$

- Conditioning (update via Bayes rule given the observed process):

$$
\hat{X}_{t}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t-1}, Y_{t}\right]=\operatorname{function}\left(\hat{X}_{t}^{-}, Y_{t}\right)
$$

Main idea of our approach: use the two-step update, performing perform step 2 with a

Kalman filter: basic idea

- Let $(X, Y) \sim \mathcal{N}(\mu, \Sigma) \Longrightarrow \xi=\frac{X-\mu_{1}}{\sigma_{1}}, \gamma=\frac{Y-\mu_{2}}{\sigma_{2}} \sim \mathcal{N}(0,1)$ with correlation $\rho=\frac{\sigma_{12}}{\sigma_{1} \sigma_{2}}$
- Then

$$
\xi=\rho \gamma+\sqrt{1-\rho^{2}} \gamma^{\prime}, \quad \text { with } \gamma^{\prime} \sim \mathcal{N}(0,1), \text { independent of } \gamma
$$

- That is

$$
\begin{gathered}
X=\mu_{1}+\rho \cdot \sigma_{1} \frac{Y-\mu_{2}}{\sigma_{2}}+\sigma_{1} \sqrt{1-\rho^{2} \gamma^{\prime}} \\
X \left\lvert\, Y \sim \mathcal{N}\left(\mu_{1}+\rho \cdot \sigma_{1} \frac{Y-\mu_{2}}{\sigma_{2}}, \sigma_{1} \sqrt{1-\rho^{2}}\right)\right.
\end{gathered}
$$

- In particular,

$$
\mathbb{E}[X \mid Y]=\mu_{1}+\rho \cdot \sigma_{1} \frac{Y-\mu_{2}}{\sigma_{2}}
$$

Kalman filter

- Consider the system:

$$
\begin{aligned}
X_{t} & =a_{t} X_{t-1}+b_{t} \varepsilon_{t}, \\
Y_{t} & =A_{t} X_{t}+B_{t} \eta_{t},
\end{aligned}
$$

with $\varepsilon_{t}, \eta_{t}$ independent standard normal

Kalman filter

- Consider the system:

$$
\begin{aligned}
X_{t} & =a_{t} X_{t-1}+b_{t} \varepsilon_{t}, \\
Y_{t} & =A_{t} X_{t}+B_{t} \eta_{t},
\end{aligned}
$$

with $\varepsilon_{t}, \eta_{t}$ independent standard normal

- Then the two-steps update is given by:

$$
\begin{aligned}
\hat{X}_{t}^{-} & =a_{t} \hat{X}_{t-1} \\
\hat{X}_{t} & =a_{t} \hat{X}_{t-1}+G_{t} \cdot\left(Y_{t}-A_{t} a_{t} \hat{X}_{t-1}\right)
\end{aligned}
$$

with $G_{t}=\frac{A_{t} C_{t}}{A_{t}^{2} C_{t}+B_{t}^{2}}$ and $C_{t}=a_{t}^{2}\left(1-G_{t-1} A_{t}\right) C_{t-1}+b_{t}^{2}$
(Explicit formulation of posterior distribution in a linear Gaussian setting)

Conditional expectations as transports

Lemma

Let E, F be Polish spaces, X, Y non-atomic r.v.'s taking values in E, F, resp. Then:
(i) There exists a measurable map $T: E \times F \rightarrow E$ s.t., for $\tilde{X} \sim X, \tilde{Y} \sim Y, \tilde{X} \perp \tilde{Y}$,

$$
(T(\tilde{X}, \tilde{Y}), \tilde{Y}) \stackrel{\operatorname{Law}}{=}(X, Y)
$$

This means that $S:(x, y) \mapsto(T(x, y), y)$ is a Monge map that transports the independent coupling $P_{X} \otimes P_{Y}$ into the joint distribution $P_{X Y}$:

$$
S_{\#}\left(P_{X} \otimes P_{Y}\right)=P_{X Y} .
$$

Conditional expectations as transports

Lemma

Let E, F be Polish spaces, X, Y non-atomic r.v.'s taking values in E, F, resp. Then:
(i) There exists a measurable map $T: E \times F \rightarrow E$ s.t., for $\tilde{X} \sim X, \tilde{Y} \sim Y, \tilde{X} \perp \tilde{Y}$,

$$
(T(\tilde{X}, \tilde{Y}), \tilde{Y}) \stackrel{\operatorname{Law}}{=}(X, Y)
$$

This means that $S:(x, y) \mapsto(T(x, y), y)$ is a Monge map that transports the independent coupling $P_{X} \otimes P_{Y}$ into the joint distribution $P_{X Y}$:

$$
S_{\#}\left(P_{X} \otimes P_{Y}\right)=P_{X Y} .
$$

(ii) For every map T as in (i),

$$
P(T(X, y) \in \cdot)=P(X \in \cdot \mid Y=y), \quad d P_{Y} \text {-almost all } y \in F .
$$

Conditional expectations as transports (Hosseini and Taghvaei 2022)

- Let $E=F=\mathbb{R}^{d}$ and $\mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)$ be set of maps $S:(x, y) \mapsto(T(x, y), y)$ as above, and consider the transport problem over those maps:

$$
\min _{S \in \mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)} \mathbb{E}_{(X, Y) \sim P_{X} \otimes P_{Y}}\left[\|T(X, Y)-X\|^{2}\right]
$$

Conditional expectations as transports (Hosseini and Taghvaei 2022)

- Let $E=F=\mathbb{R}^{d}$ and $\mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)$ be set of maps $S:(x, y) \mapsto(T(x, y), y)$ as above, and consider the transport problem over those maps:

$$
\min _{S \in \mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)} \mathbb{E}_{(X, Y) \sim P_{X} \otimes P_{Y}}\left[\|T(X, Y)-X\|^{2}\right]
$$

- Its dual reads as

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X} \otimes P_{Y}}[f(X, Y)]+\mathbb{E}_{P_{X Y}}\left[f^{*}(X, Y)\right],
$$

where $f \in C V X_{X}$ iff $x \mapsto f(x, y)$ convex and in $L^{1}\left(P_{X}\right)$ for any y, and where $f^{*}(x, y)=\sup _{z} z \cdot x-f(z, y)$ is the convex conjugate of $f(\cdot, y)$.

Conditional expectations as transports (Hosseini and Taghvaei 2022)

- Let $E=F=\mathbb{R}^{d}$ and $\mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)$ be set of maps $S:(x, y) \mapsto(T(x, y), y)$ as above, and consider the transport problem over those maps:

$$
\min _{S \in \mathcal{S}\left(P_{X} \otimes P_{Y}, P_{X Y}\right)} \mathbb{E}_{(X, Y) \sim P_{X} \otimes P_{Y}}\left[\|T(X, Y)-X\|^{2}\right] .
$$

- Its dual reads as

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X} \otimes P_{Y}}[f(X, Y)]+\mathbb{E}_{P_{X Y}}\left[f^{*}(X, Y)\right],
$$

where $f \in C V X_{X}$ iff $x \mapsto f(x, y)$ convex and in $L^{1}\left(P_{X}\right)$ for any y, and where $f^{*}(x, y)=\sup _{z} z \cdot x-f(z, y)$ is the convex conjugate of $f(\cdot, y)$.

- Relation between the primal optimizer \bar{T} and any dual optimizer \bar{f} :

$$
\bar{T}(., y)=\nabla_{x} \bar{f}(., y),
$$

so that

$$
P_{X \mid Y=y}=\nabla_{x} \bar{f}(., y)_{\#} P_{X}
$$

Example: Gaussian case

- Recall the Gaussian example $(X, Y) \sim \mathcal{N}(\mu, \Sigma)$, where for simplicity $\mu_{i}=0, \sigma_{i}=1$. Then we have

$$
X=\rho Y+\sqrt{1-\rho^{2}} \gamma^{\prime}, \quad \gamma^{\prime} \sim \mathcal{N}(0,1) \perp Y
$$

- We can recover this by solving the OT problem above, that admits optimal transport map

$$
\bar{T}(x, y)=\rho x+\sqrt{1-\rho^{2}} y
$$

so that

$$
P_{X \mid Y=y}=\bar{T}(., y) \# P_{X}
$$

The general (non-linear non-Gaussian) case

We want to develop an analogous analysis for systems of the form:

$$
\begin{aligned}
X_{t} & =g_{t}\left(X_{t-1}, \varepsilon_{t}\right), \quad X_{0} \sim p_{0} \\
Y_{t} & =h_{t}\left(X_{t}, \eta_{t}\right)
\end{aligned}
$$

The general (non-linear non-Gaussian) case

We want to develop an analogous analysis for systems of the form:

$$
\begin{aligned}
X_{t} & =g_{t}\left(X_{t-1}, \varepsilon_{t}\right), \quad X_{0} \sim p_{0} \\
Y_{t} & =h_{t}\left(X_{t}, \eta_{t}\right)
\end{aligned}
$$

- I. Smoothing: at every t, re-estimate all $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t}$, given Y_{0}, \ldots, Y_{t}.

The general (non-linear non-Gaussian) case

We want to develop an analogous analysis for systems of the form:

$$
\begin{aligned}
X_{t} & =g_{t}\left(X_{t-1}, \varepsilon_{t}\right), \quad X_{0} \sim p_{0} \\
Y_{t} & =h_{t}\left(X_{t}, \eta_{t}\right)
\end{aligned}
$$

- I. Smoothing: at every t, re-estimate all $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t}$, given Y_{0}, \ldots, Y_{t}.
- II. Non-smoothing: at every t, keep previous estimates $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t-1}$, and estimate only \hat{X}_{t} using:
- previous estimates, together with
- new observation Y_{t}

Smoothing

I. Smoothing: at every t, re-estimate all $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t}$, given Y_{0}, \ldots, Y_{t}.

Smoothing

I. Smoothing: at every t, re-estimate all $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t}$, given Y_{0}, \ldots, Y_{t}.

- Consider $T_{t}: \mathbb{R}^{2 d(t+1)} \rightarrow \mathbb{R}^{d(t+1)}$ and $S_{t}: \mathbb{R}^{2 d(t+1)} \rightarrow \mathbb{R}^{2 d(t+1)}, S_{t}(x, y)=\left(T_{t}(x, y), y\right)$ s.t.

$$
S_{t \#}\left(P_{X_{0: t}} \otimes P_{Y_{0: t}}\right)=P_{X_{0: t}, Y_{0: t}},
$$

so that $T_{t}\left(X_{0: t} ; Y_{0: t}\right)$ has the interpretation of $X_{0: t} \mid Y_{0: t}$

Smoothing

I. Smoothing: at every t, re-estimate all $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t}$, given Y_{0}, \ldots, Y_{t}.

- Consider $T_{t}: \mathbb{R}^{2 d(t+1)} \rightarrow \mathbb{R}^{d(t+1)}$ and $S_{t}: \mathbb{R}^{2 d(t+1)} \rightarrow \mathbb{R}^{2 d(t+1)}, S_{t}(x, y)=\left(T_{t}(x, y), y\right)$ s.t.

$$
S_{t \#}\left(P_{X_{0: t}} \otimes P_{Y_{0: t}}\right)=P_{X_{0: t}, Y_{0: t}},
$$

so that $T_{t}\left(X_{0: t} ; Y_{0: t}\right)$ has the interpretation of $X_{0: t} \mid Y_{0: t}$

- Consider the transport problem with cost $\left\|T_{t}\left(X_{0: t} ; Y_{0: t}\right)-X_{0: t}\right\|^{2}$ over such maps S_{t}
$\Rightarrow t+1$-dimensional version of the static setting seen above: solve dual problem and get \bar{f}, and from it obtain, for any observation $y_{0: t}$:

$$
P_{X_{0: t} \mid Y_{0: t}=y_{0: t}}=\nabla_{x} \bar{f}\left(., y_{0: t}\right) P_{X_{0: t}}
$$

Smoothing - algorithm

- At time t we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{0: t}} \otimes P_{Y_{0: t}}}[f(X, Y)]+\mathbb{E}_{P_{X_{0: t}, Y_{0: t}}}\left[f^{*}(X, Y)\right]
$$

Smoothing - algorithm

- At time t we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{0: t}} \otimes P_{Y_{0: t}}}[f(X, Y)]+\mathbb{E}_{P_{X_{0: t}, Y_{0: t}}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{X_{0: t}^{i}\right\}_{i=1, \ldots, N}$ from prior $P_{X_{0: t}}$ and from them generate $Y_{0: t}^{i} \sim P_{Y_{0: t} \mid X_{0: t}=X_{0: t}^{i}}$ so that $\left\{\left(X_{0: t}^{i}, Y_{0: t}^{i}\right)\right\}_{i=1, . ., N}$ is an independent sample from the joint distribution $P_{X_{0: t}, Y_{0: t}}$

Smoothing - algorithm

- At time t we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{0: t}} \otimes P_{Y_{0: t}}}[f(X, Y)]+\mathbb{E}_{P_{X_{0: t}, Y_{0: t}}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{X_{0: t}^{i}\right\}_{i=1, \ldots, N}$ from prior $P_{X_{0: t}}$ and from them generate $Y_{0: t}^{i} \sim P_{Y_{0: t} \mid X_{0: t}=X_{0: t}^{i}}$ so that $\left\{\left(X_{0: t}^{i}, Y_{0: t}^{i}\right)\right\}_{i=1, . ., N}$ is an independent sample from the joint distribution $P_{X_{0: t}, Y_{0: t}}$
- Fix a subset $\mathcal{F} \subset C V X_{X}$ of parameterized functions and define the empirical cost

$$
V^{N}(f)=\frac{1}{N(N-1)} \sum_{i \neq j=1}^{N} f\left(X_{0: t}^{i}, Y_{0: t}^{j}\right)+\frac{1}{N} \sum_{i=1}^{N} f^{*}\left(X_{0: t}^{i}, Y_{0: t}^{i}\right), \quad \forall f \in \mathcal{F}
$$

Smoothing - algorithm

- At time t we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{0: t}} \otimes P_{Y_{0: t}}}[f(X, Y)]+\mathbb{E}_{P_{X_{0: t}, Y_{0: t}}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{X_{0: t}^{i}\right\}_{i=1, \ldots, N}$ from prior $P_{X_{0: t}}$ and from them generate $Y_{0: t}^{i} \sim P_{Y_{0: t} \mid X_{0: t}=X_{0: t}^{i}}$ so that $\left\{\left(X_{0: t}^{i}, Y_{0: t}^{i}\right)\right\}_{i=1, . ., N}$ is an independent sample from the joint distribution $P_{X_{0: t}, Y_{0: t}}$
- Fix a subset $\mathcal{F} \subset C V X_{X}$ of parameterized functions and define the empirical cost

$$
V^{N}(f)=\frac{1}{N(N-1)} \sum_{i \neq j=1}^{N} f\left(X_{0: t}^{i}, Y_{0: t}^{j}\right)+\frac{1}{N} \sum_{i=1}^{N} f^{*}\left(X_{0: t}^{i}, Y_{0: t}^{i}\right), \quad \forall f \in \mathcal{F}
$$

- Minimize over \mathcal{F} and use $\bar{f}^{N, \mathcal{F}} \in \operatorname{argmin} V^{N}(f)$ to generate sample from posterior given the realization $y_{0: t}$:

$$
f \in \mathcal{F}
$$

$$
\begin{array}{cc}
\tilde{X}_{0: t}^{i}=\nabla_{x} \bar{f}^{N, \mathcal{F}}\left(X_{0: t}^{i}, y_{0: t}\right) \\
\uparrow & \uparrow \\
\text { posterior } & \uparrow \text { prior }
\end{array}
$$

Non-smoothing

II. Non-smoothing: at every t, keep previous estimates $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t-1}$, and estimate \hat{X}_{t} using the previous estimates together with the new observation Y_{t}

Non-smoothing

II. Non-smoothing: at every t, keep previous estimates $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t-1}$, and estimate \hat{X}_{t} using the previous estimates together with the new observation Y_{t}

Idea: use the two-step iteration

$$
\begin{aligned}
& \hat{X}_{t}^{-}=\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right] \\
& \hat{X}_{t}=\text { function }\left(\hat{X}_{t}^{-}, Y_{t}\right)
\end{aligned}
$$

learning the conditioning function as an optimal transport map, analogous to HT22

Non-smoothing

II. Non-smoothing: at every t, keep previous estimates $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t-1}$, and estimate \hat{X}_{t} using the previous estimates together with the new observation Y_{t}

Idea: use the two-step iteration

$$
\begin{aligned}
\hat{X}_{t}^{-} & =\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right] \\
\hat{X}_{t} & =\text { function }\left(\hat{X}_{t}^{-}, Y_{t}\right)
\end{aligned}
$$

learning the conditioning function as an optimal transport map, analogous to HT22
"Something like"

$$
\min _{S_{t} \in \mathcal{S}\left(P_{X_{t}} \otimes P_{Y_{t}}, P_{\left.X_{t}, Y_{t}\right)}\right.} \mathbb{E}_{\left(X_{t}, Y_{t}\right) \sim P_{X_{t}} \otimes P_{Y_{t}}}\left[\left\|T_{t}\left(X_{t} ; Y_{t}\right)-X_{t}\right\|^{2}\right]
$$

Non-smoothing

II. Non-smoothing: at every t, keep previous estimates $\hat{X}_{0}, \hat{X}_{1}, \ldots, \hat{X}_{t-1}$, and estimate \hat{X}_{t} using the previous estimates together with the new observation Y_{t}

Idea: use the two-step iteration

$$
\begin{aligned}
\hat{X}_{t}^{-} & =\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right] \\
\hat{X}_{t} & =\text { function }\left(\hat{X}_{t}^{-}, Y_{t}\right)
\end{aligned}
$$

learning the conditioning function as an optimal transport map, analogous to HT22 "Something like"

$$
\min _{S_{t} \in \mathcal{S}\left(P_{X_{t}} \otimes P_{Y_{t}}, P_{\left.X_{t}, Y_{t}\right)}\right.} \mathbb{E}_{\left(X_{t}, Y_{t}\right) \sim P_{X_{t}} \otimes P_{Y_{t}}}\left[\left\|T_{t}\left(X_{t} ; Y_{t}\right)-X_{t}\right\|^{2}\right]
$$

\rightarrow But some adjustment is needed since \hat{X}_{t}^{-}and Y_{t} are NOT independent

Non-smoothing

- We want to set $\hat{X}_{t}=$ function $\left(\mathbb{E}_{\tilde{\varepsilon}_{i} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right], Y_{t}\right)$ with independent arguments

Non-smoothing

- We want to set $\hat{X}_{t}=$ function $\left(\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right], Y_{t}\right)$ with independent arguments \Rightarrow condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$

Non-smoothing

- We want to set $\hat{X}_{t}=$ function $\left(\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right], Y_{t}\right)$ with independent arguments \Rightarrow condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$
- Let the map $\bar{T}_{t}^{\bar{x}}$ be s.t. $S_{t}(x, y)=\left(\bar{T}_{t}^{\bar{x}}(x, y), y\right)$ is optimizer for

$$
\min _{S_{t} \in \mathcal{S}\left(P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}, P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}\right)} \mathbb{E}_{\left(X_{t}, Y_{t}\right) \sim P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}\left[\left\|T_{t}\left(X_{t} ; Y_{t}\right)-X_{t}\right\|^{2}\right],
$$

- i.e. $\bar{T}_{t}^{\bar{x}}(., y)=\nabla_{x} \bar{f}_{t}^{\bar{x}}(., y)$, with $\bar{f}_{t}^{\bar{x}}$ dual optimizer

Non-smoothing

- We want to set $\hat{X}_{t}=$ function $\left(\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\hat{X}_{t-1}, \tilde{\varepsilon}_{t}\right)\right], Y_{t}\right)$ with independent arguments \Rightarrow condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$
- Let the map $\bar{T}_{t}^{\bar{x}}$ be s.t. $S_{t}(x, y)=\left(\bar{T}_{t}^{\bar{x}}(x, y), y\right)$ is optimizer for

$$
\min _{S_{t} \in \mathcal{S}\left(P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}, P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}\right)} \mathbb{E}_{\left(X_{t}, Y_{t}\right) \sim P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}\left[\left\|T_{t}\left(X_{t} ; Y_{t}\right)-X_{t}\right\|^{2}\right],
$$

- i.e. $\bar{T}_{t}^{\bar{x}}(., y)=\nabla_{x} \bar{f}_{t}^{\bar{x}}(., y)$, with $\bar{f}_{t}^{\bar{x}}$ dual optimizer
- As updating step in our algorithm, we take

$$
\hat{X}_{t}=\nabla_{x} \bar{f}_{t}^{\bar{x}}\left(\mathbb{E}_{\tilde{\varepsilon}_{t} \sim \varepsilon_{t}}\left[g_{t}\left(\bar{x}, \tilde{\varepsilon}_{t}\right)\right], Y_{t}\right)
$$

Example: Kalman filter

- Recall the system

$$
\begin{aligned}
X_{t} & =a_{t} X_{t-1}+b_{t} \varepsilon_{t}, \\
Y_{t} & =A_{t} X_{t}+B_{t} \eta_{t},
\end{aligned}
$$

with $\varepsilon_{t}, \eta_{t}$ independent standard normal, where we have

$$
\hat{X}_{t}=a_{t} \hat{X}_{t-1}+G_{t} \cdot\left(Y_{t}-A_{t} a_{t} \hat{X}_{t-1}\right)
$$

- We can recover this by solving the OT problems above, that admit optimal transport map (same for every \bar{x})

$$
\bar{T}_{t}(x ; y)=x+G_{t} \cdot\left(y-A_{t} x\right)
$$

Non-smoothing - algorithm

- At time t, condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$, we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}[f(X, Y)]+\mathbb{E}_{P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}}\left[f^{*}(X, Y)\right]
$$

Non-smoothing - algorithm

- At time t, condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$, we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}[f(X, Y)]+\mathbb{E}_{P_{\left(X_{t}, Y_{t} \mid X_{t-1}=\bar{x}\right.}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{\tilde{\varepsilon}_{t}^{i}\right\}_{i=1, \ldots, N} \sim \varepsilon_{t}$ independent from everything else, to get the sample $X_{t}^{i}=g_{t}\left(\bar{x}, \tilde{\varepsilon}_{t}^{i}\right)$ from the prior and from them generate $Y_{t}^{i} \sim P_{Y_{t} \mid X_{t}=X_{t}^{i}}$, so that $\left\{\left(X_{t}^{i}, Y_{t}^{i}\right)\right\}_{i=1, \ldots, N}$ is an independent sample from the joint distribution $P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}$

Non-smoothing - algorithm

- At time t, condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$, we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{t} \mid X_{t-1}=\overline{\bar{x}}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}[f(X, Y)]+\mathbb{E}_{P_{\left(X_{t}, Y_{t} \mid X_{t-1}=\bar{x}\right.}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{\tilde{\varepsilon}_{t}^{i}\right\}_{i=1, \ldots, N} \sim \varepsilon_{t}$ independent from everything else, to get the sample $X_{t}^{i}=g_{t}\left(\bar{x}, \tilde{\varepsilon}_{t}^{i}\right)$ from the prior and from them generate $Y_{t}^{i} \sim P_{Y_{t} \mid X_{t}=X_{t}^{i}}$, so that $\left\{\left(X_{t}^{i}, Y_{t}^{i}\right)\right\}_{i=1, \ldots, N}$ is an independent sample from the joint distribution $P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}$
- Fix a subset $\mathcal{F} \subset C V X_{X}$ of parameterized functions and define the empirical cost

$$
V^{N}(f)=\frac{1}{N(N-1)} \sum_{i \neq j=1}^{N} f\left(X_{t}^{i}, Y_{t}^{j}\right)+\frac{1}{N} \sum_{i=1}^{N} f^{*}\left(X_{t}^{i}, Y_{t}^{i}\right), \quad \forall f \in \mathcal{F}
$$

Non-smoothing - algorithm

- At time t, condition on the previous estimate $\hat{X}_{t-1}=\bar{x}$, we face the dual problem:

$$
\min _{f \in C V X_{X}} \mathbb{E}_{P_{X_{t} \mid X_{t-1}=\bar{x}} \otimes P_{Y_{t} \mid X_{t-1}=\bar{x}}}[f(X, Y)]+\mathbb{E}_{P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}}\left[f^{*}(X, Y)\right]
$$

- Sample $\left\{\tilde{\varepsilon}_{t}^{i}\right\}_{i=1, \ldots, N} \sim \varepsilon_{t}$ independent from everything else, to get the sample $X_{t}^{i}=g_{t}\left(\bar{x}, \tilde{\varepsilon}_{t}^{i}\right)$ from the prior and from them generate $Y_{t}^{i} \sim P_{Y_{t} \mid X_{t}=X_{t}^{i}}$, so that $\left\{\left(X_{t}^{i}, Y_{t}^{i}\right)\right\}_{i=1, \ldots, N}$ is an independent sample from the joint distribution $P_{\left(X_{t}, Y_{t}\right) \mid X_{t-1}=\bar{x}}$
- Fix a subset $\mathcal{F} \subset C V X_{X}$ of parameterized functions and define the empirical cost

$$
V^{N}(f)=\frac{1}{N(N-1)} \sum_{i \neq j=1}^{N} f\left(X_{t}^{i}, Y_{t}^{j}\right)+\frac{1}{N} \sum_{i=1}^{N} f^{*}\left(X_{t}^{i}, Y_{t}^{i}\right), \quad \forall f \in \mathcal{F}
$$

- Minimize over \mathcal{F} and use $\bar{f}^{\bar{x}, N, \mathcal{F}} \in \underset{f \in \mathscr{F}}{\operatorname{argmin}} V^{N}(f)$ to generate sample from posterior given the realization y_{t} :

$$
f \in \mathcal{F}
$$

$$
\tilde{X}_{t}^{i}=\nabla_{x} \bar{f}^{\bar{x}, N, \mathcal{F}}\left(X_{t}^{i}, y_{t}\right)
$$

Conclusions

- We consider discrete-time dynamic systems of hidden and observable processes (these can be defined on different spaces, have different dimension etc)

Conclusions

- We consider discrete-time dynamic systems of hidden and observable processes (these can be defined on different spaces, have different dimension etc)
- We consider smoothing and non-smoothing in filtering

Conclusions

- We consider discrete-time dynamic systems of hidden and observable processes (these can be defined on different spaces, have different dimension etc)
- We consider smoothing and non-smoothing in filtering
- We implement a variational representation of Bayes' through optimal transport theory, to learn transport maps that push independent coupling to joint distribution, and so implicitly the map that sends prior to posterior (we are not only learning $\hat{X}_{t}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t}\right]$ but the whole posterior distribution $\left.P_{X_{t} \mid Y_{0}, \ldots, Y_{t}}\right)$

Conclusions

- We consider discrete-time dynamic systems of hidden and observable processes (these can be defined on different spaces, have different dimension etc)
- We consider smoothing and non-smoothing in filtering
- We implement a variational representation of Bayes' through optimal transport theory, to learn transport maps that push independent coupling to joint distribution, and so implicitly the map that sends prior to posterior (we are not only learning $\hat{X}_{t}=\mathbb{E}\left[X_{t} \mid Y_{0}, \ldots, Y_{t}\right]$ but the whole posterior distribution $\left.P_{X_{t} \mid Y_{0}, \ldots, Y_{t}}\right)$
- Once optimal transport maps are learned (by simulation and approximation of dual problem), these can be used for any realization of the observable process (without need to be computed again for different realizations)

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$
- Consider more general dynamics

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$
- Consider more general dynamics
- Consider different costs in the OT problem, test and compare solutions

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$
- Consider more general dynamics
- Consider different costs in the OT problem, test and compare solutions
- Study stability, error, ...

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$
- Consider more general dynamics
- Consider different costs in the OT problem, test and compare solutions
- Study stability, error, ...
- Introduce uncertainty (around dynamics of X or Y, or as adapted Wasserstein balls around P_{X}, P_{Y} or $P_{X Y}$)

Still a lot to do and understand...

- Reduce complexity by e.g. solving some conditional version of the transport problem, or by using \tilde{X}_{t-1}^{i} rather than conditioning to $\hat{X}_{t-1}=\bar{x}$
- Consider more general dynamics
- Consider different costs in the OT problem, test and compare solutions
- Study stability, error, ...
- Introduce uncertainty (around dynamics of X or Y, or as adapted Wasserstein balls around P_{X}, P_{Y} or $P_{X Y}$)

Thank you for your attention!

